Advances in Machine Learning Approaches to Heart Failure with Preserved Ejection Fraction.

Heart Fail Clin

Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Bluhm Cardiovascular Institute Center for Artificial Intelligence, Northwestern Medicine, Chicago, IL, USA; Center for Deep Phenotyping and Precision Therapeutics, Institute for Augmented Intelligence in Medicine, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street, Suite 730, Chicago, IL 60611, USA. Electronic address: https://twitter.com/HFpEF.

Published: April 2022

Heart failure with preserved ejection fraction (HFpEF) represents a prototypical cardiovascular condition in which machine learning may improve targeted therapies and mechanistic understanding of pathogenesis. Machine learning, which involves algorithms that learn from data, has the potential to guide precision medicine approaches for complex clinical syndromes such as HFpEF. It is therefore important to understand the potential utility and common pitfalls of machine learning so that it can be applied and interpreted appropriately. Although machine learning holds considerable promise for HFpEF, it is subject to several potential pitfalls, which are important factors to consider when interpreting machine learning studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983114PMC
http://dx.doi.org/10.1016/j.hfc.2021.12.002DOI Listing

Publication Analysis

Top Keywords

machine learning
24
heart failure
8
failure preserved
8
preserved ejection
8
ejection fraction
8
learning
6
machine
5
advances machine
4
learning approaches
4
approaches heart
4

Similar Publications

Background: Recent studies suggest a connection between immunoglobulin light chains (IgLCs) and coronary heart disease (CHD). However, current diagnostic methods using peripheral blood IgLCs levels or subtype ratios show limited accuracy for CHD, lacking comprehensive assessment and posing challenges in early detection and precise disease severity evaluation. We aim to develop and validate a Coronary Health Index (CHI) incorporating total IgLCs levels and their distribution.

View Article and Find Full Text PDF

Comprehensive analysis of scRNA-seq and bulk RNA-seq reveals the non-cardiomyocytes heterogeneity and novel cell populations in dilated cardiomyopathy.

J Transl Med

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.

Background: Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. Infiltration and alterations in non-cardiomyocytes of the human heart involve crucially in the occurrence of DCM and associated immunotherapeutic approaches.

Methods: We constructed a single-cell transcriptional atlas of DCM and normal patients.

View Article and Find Full Text PDF

Background: The diagnosis and treatment of epilepsy continue to face numerous challenges, highlighting the urgent need for the development of rapid, accurate, and non-invasive methods for seizure detection. In recent years, advancements in the analysis of electroencephalogram (EEG) signals have garnered widespread attention, particularly in the area of seizure recognition.

Methods: A novel hybrid deep learning approach that combines feature fusion for efficient seizure detection is proposed in this study.

View Article and Find Full Text PDF

Background: The progression and severity of periodontitis (PD) are associated with the release of extracellular vesicles by periodontal tissue cells. However, the precise mechanisms through which exosome-related genes (ERGs) influence PD remain unclear. This study aimed to investigate the role and potential mechanisms of key exosome-related genes in PD using transcriptome profiling at the single-cell level.

View Article and Find Full Text PDF

Background: Machine learning (ML) is increasingly used to predict clinical deterioration in intensive care unit (ICU) patients through scoring systems. Although promising, such algorithms often overfit their training cohort and perform worse at new hospitals. Thus, external validation is a critical - but frequently overlooked - step to establish the reliability of predicted risk scores to translate them into clinical practice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!