Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The recently emerged actinide (An) M-edge high-energy resolution X-ray absorption near-edge structure (HR-XANES) technique has proven to be very powerful for oxidation state studies of actinides. In this work, for the first time, Np M-edge HR-XANES was applied to study Np sorption on illite. By improving the experimental conditions, notably by operation of the spectrometer under He atmosphere, it was possible to measure Np M-edge HR-XANES spectra of a sample with ≈ 1 μg Np/g illite (1 ppm). This is 30-2000 times lower than Np loadings on mineral surfaces usually investigated by X-ray absorption spectroscopy. A newly designed cryogenic configuration enabled sample temperatures of 141.2 ± 1.5 K and successfully prevented beam-induced changes of the Np oxidation state. The described approach paves the way for the examination of coupled redox/solid-liquid interface reactions of actinide ions via An M-edge HR-XANES spectroscopy at low metal ion concentrations, which are of specific relevance for contaminated sites and nuclear waste disposal studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2022.339636 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!