AI Article Synopsis

  • The primary treatment for breast cancer involves surgically removing the tumor along with a margin of healthy tissue, and there's a need for better methods to assess surgical margins during surgery.
  • Differential ion mobility spectrometry (DMS) is a method that can differentiate between healthy and cancerous tissues, but its detection limit for cancer cells is not well defined.
  • In this study, DMS was tested with a breast cancer cell line in a human-like tissue environment, and machine learning models were developed to identify a detection threshold, revealing that DMS can reliably detect cancer cell densities of 3,700 cells per microliter or higher, which is important for identifying surgical margins.

Article Abstract

The primary treatment of breast cancer is the surgical removal of the tumor with an adequate healthy tissue margin. An intraoperative method for assessing surgical margins could optimize tumor resection. Differential ion mobility spectrometry (DMS) is applicable for tissue analysis and allows for the differentiation of malignant and benign tissues. However, the number of cancer cells necessary for detection remains unknown. We studied the detection threshold of DMS for cancer cell identification with a widely characterized breast cancer cell line (BT-474) dispersed in a human myoma-based tumor microenvironment mimicking matrix (Myogel). Predetermined, small numbers of cultured BT-474 cells were dispersed into Myogel. Pure Myogel was used as a zero sample. All samples were assessed with a DMS-based custom-built device described as "the automated tissue laser analysis system" (ATLAS). We used machine learning to determine the detection threshold for cancer cell densities by training binary classifiers to distinguish the reference level (zero sample) from single predetermined cancer cell density levels. Each classifier (sLDA, linear SVM, radial SVM, and CNN) was able to detect cell density of 3700 cells μL and above. These results suggest that DMS combined with laser desorption can detect low densities of breast cancer cells, at levels clinically relevant for margin detection, from Myogel samples in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2022.339659DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
cancer cell
16
cancer cells
12
cancer
8
differential ion
8
ion mobility
8
mobility spectrometry
8
detection threshold
8
cell density
8
detection
5

Similar Publications

Background: Trastuzumab deruxtecan (T-DXd) has shown promising activity in patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) and central nervous system (CNS) involvement. In this updated meta-analysis, we explore the effectiveness of T-DXd in a large subset of patients with HER2-positive BC and CNS disease.

Methods: A systematic search was made on September 16th, 2024, for studies investigating T-DXd in the scenario of HER2-positive BC and brain metastases (BMs) and/or leptomeningeal disease (LMD).

View Article and Find Full Text PDF

Synthesis of complex, multiring, spirocyclic, 1,3-dicarbonyl fused, and highly functionalized 5-phenyl-1-azabicyclo[3.1.0]hexanes (ABCH) has been achieved by an intermolecular reaction of 2-(2'-ketoalkyl)-1,3-indandiones or α,γ-diketo esters with (1-azidovinyl)benzenes under transition metal-free conditions.

View Article and Find Full Text PDF

Supervised Exercise for Patients With Metastatic Breast Cancer: A Cost-Utility Analysis Alongside the PREFERABLE-EFFECT Randomized Controlled Trial.

J Clin Oncol

January 2025

Department of Epidemiology and Health Economics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

Purpose: To evaluate the cost utility of a 9-month supervised exercise program for patients with metastatic breast cancer (mBC), compared with control (usual care, supplemented with general activity advice and an activity tracker). Evidence on the cost-effectiveness of exercise for patients with mBC is essential for implementation in clinical practice and is currently lacking.

Methods: A cost-utility analysis was performed alongside the multinational PREFERABLE-EFFECT randomized controlled trial, conducted in 8 centers across Europe and Australia.

View Article and Find Full Text PDF

Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis.

View Article and Find Full Text PDF

Introduction: Personalised prevention offers a promising tool to reduce the impact of non-communicable diseases, which represent a growing health burden worldwide. However, to support the adoption of this innovation it is needed to clarify the current state of available evidence in this area. This work aims to provide an overview of recent publications on personalised prevention for chronic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!