A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The research of recognition of peep door open state of ethylene cracking furnace based on deep learning. | LitMetric

In the chemical industry, the ethylene cracking furnace is the core ethylene production equipment, and its safe and stable operation must be ensured. The fire gate is the only observation window to understand the high temperature operating conditions inside the cracking furnace. In the automatic monitoring process of ethylene production, the accurate identification of the opening and closing status of the fire door is particularly important. Through the research on the ethylene cracking production process, based on deep learning, the open and closed state of the fire gate is recognized and studied. First of all, a series of preprocessing and augmentation are performed on the originally collected image data of the fire gate. Then, a recognition model is constructed based on convolutional neural network, and the preprocessed data is used to train the model. Optimization algorithms such as Adam are used to update the model parameters to improve the generalization ability of the model. Finally, the proposed recognition model is verified based on the test set and is compared with the transfer learning model. The experimental results show that the proposed model can accurately recognize the open state of the fire door and is more stable than the migration learning model.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2022160DOI Listing

Publication Analysis

Top Keywords

ethylene cracking
12
cracking furnace
12
fire gate
12
open state
8
based deep
8
deep learning
8
ethylene production
8
fire door
8
state fire
8
model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!