Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Indonesia is one of the Southeast Asian countries with high case numbers of COVID-19 with up to 4.2 million confirmed cases by 29 October 2021. Understanding the genome of SARS-CoV-2 is crucial for delivering public health intervention as certain variants may have different attributes that can potentially affect their transmissibility, as well as the performance of diagnostics, vaccines, and therapeutics.
Objectives: We aimed to investigate the dynamics of circulating SARS-CoV-2 variants over a 15-month period in Bogor and its surrounding areas in correlation with the first and second wave of COVID-19 in Indonesia.
Methods: Nasopharyngeal and oropharyngeal swab samples collected from suspected patients from Bogor, Jakarta and Tangerang were confirmed for SARS-CoV-2 infection with RT-PCR. RNA samples of those confirmed patients were subjected to whole genome sequencing using the ARTIC Network protocol and sequencer platform from Oxford Nanopore Technologies (ONT).
Results: We successfully identified 16 lineages and six clades out of 202 samples (male = 116, female = 86). Genome analysis revealed that Indonesian lineage B.1.466.2 dominated during the first wave ( = 48, 23.8%) while Delta variants (AY.23, AY.24, AY.39, AY.42, AY.43 dan AY.79) were dominant during the second wave ( = 53, 26.2%) following the highest number of confirmed cases in Indonesia. In the spike protein gene, S_D614G and S_P681R changes were dominant in both B.1.466.2 and Delta variants, while N439K was only observed in B.1.466.2 ( = 44) and B.1.470 ( = 1). Additionally, the S_T19R, S_E156G, S_F157del, S_R158del, S_L452R, S_T478K, S_D950N and S_V1264L changes were only detected in Delta variants, consistent with those changes being characteristic of Delta variants in general.
Conclusions: We demonstrated a shift in SARS-CoV-2 variants from the first wave of COVID-19 to Delta variants in the second wave, during which the number of confirmed cases surpassed those in the first wave of COVID-19 pandemic. Higher proportion of unique mutations detected in Delta variants compared to the first wave variants indicated potential mutational effects on viral transmissibility that correlated with a higher incidence of confirmed cases. Genomic surveillance of circulating variants, especially those with higher transmissibility, should be continuously conducted to rapidly inform decision making and support outbreak preparedness, prevention, and public health response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8953504 | PMC |
http://dx.doi.org/10.7717/peerj.13132 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!