Medical data processing is exponentially increasing day by day due to the frequent demand for many applications. Healthcare data is one such field, which is dynamically growing day by day. In today's scenario, an enormous amount of sensing devices and data collection units have been employed to generate and collect medical data all over the world. These healthcare devices will result in big real-time data streams. Hence, healthcare-based big data analytics and monitoring have gained hawk-eye importance but needs improvisation. Recently, machine and deep learning algorithms have gained importance to analyze huge amounts of medical data, extract the information, and even predict the future insights of diseases and also cope with the huge volume of data. But applying the learning models to handle big/medical data streams remains to be a challenge among the researchers. This paper proposes the novel deep learning electronic record search engine algorithm (ERSEA) along with firefly optimized long short-term memory (LSTM) model for better data analytics and monitoring. The experimentations have been carried out using Apache Spark using the different medical respiratory data. Finally, the proposed framework results are contrasted with existing models. It shows the accuracy, sensitivity, and specificity like 94%, 93.5%, and 94% for less than 5 GB dataset, and also, more than 5 GB it provides 94%, 92%, and 93% to prove the extraordinary performance of the proposed framework.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947900 | PMC |
http://dx.doi.org/10.1155/2022/7120983 | DOI Listing |
Sci Rep
December 2024
School of Physical Education, Southwest Petroleum University, Chengdu, 610500, China.
Stroke is one of the leading causes of death in developing countries, and China bears the largest global burden of stroke. This study aims to investigate the relationship between different dimensions of physical activity levels and stroke risk using a nationally representative database. We performed a cross-sectional analysis using data from the China Health and Retirement Longitudinal Study (CHARLS) 2020.
View Article and Find Full Text PDFSci Rep
December 2024
KAUST Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
Analyzing microbial samples remains computationally challenging due to their diversity and complexity. The lack of robust de novo protein function prediction methods exacerbates the difficulty in deriving functional insights from these samples. Traditional prediction methods, dependent on homology and sequence similarity, often fail to predict functions for novel proteins and proteins without known homologs.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Diagnostic Radiology, Dalhousie University, Halifax, Canada.
The goal of this study was to determine how radiologists' rating of image quality when using 0.5T Magnetic Resonance Imaging (MRI) compares to Computed Tomography (CT) for visualization of pathology and evaluation of specific anatomic regions within the paranasal sinuses. 42 patients with clinical CT scans opted to have a 0.
View Article and Find Full Text PDFSci Rep
December 2024
School of Mechanical Engineering, Liaoning Engineering Vocational College, Tieling, 112008, Liaoning, People's Republic of China.
The paper proposes a multi-rigid-body system state identification method based on self-healing model in order to improve the accuracy and reliability of CNC machine tools. Firstly, considering the influence of the joint surface, the Lagrange method is used to establish the mechanical model of the multi-rigid-body system. We input acceleration information and use the second-order modulation function to complete the online real-time identification of the joint surface parameters, thereby establishing the self-healing mechanical model of the multi-rigid-body system.
View Article and Find Full Text PDFSci Rep
December 2024
Clermont Auvergne University, CNRS, IRD, OPGC, Magmas and Volcanoes Laboratory, 63000, Clermont-Ferrand, France.
The new submarine volcano Fani Maoré offshore Mayotte (Comoros archipelago) discovered in 2019 has raised the awareness of a possible future eruption in Petite-Terre island, located on the same 60 km-long volcanic chain. In this context of a renewal of the volcanic activity, we present here the first volcanic hazard assessment in Mayotte, focusing on the potential reactivation of the Petite-Terre eruptive centers. Using the 2-D tephra dispersal model HAZMAP and the 1979 - 2021 meteorological ERA-5 database, we first identify single eruptive scenarios of various impacts for the population of Mayotte.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!