This report describes a manganese-catalyzed radical [3 + 2] cyclization of cyclopropanols and oxime ethers, leading to valuable multi-functional 1-pyrrolines. In this redox-neutral process, the oxime ethers function as internal oxidants and H-donors. The reaction involves sequential rupture of C-C, C-H and N-O bonds and proceeds under mild conditions. This intermolecular protocol provides an efficient approach for the synthesis of structurally diverse 1-pyrrolines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8890122 | PMC |
http://dx.doi.org/10.1039/d2sc00015f | DOI Listing |
J Org Chem
January 2025
Laboratory of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan.
A one-pot, telescoped transformation of silyl ethers into cyanides that proceeds via silyl-ether oxidation mediated by nitroxyl-radical catalyst and [bis(trifluoroacetoxy)iodo]benzene followed by an imine formation-oxidation sequence using iodine and aqueous ammonia is reported. This transformation is effective for the site-selective transformation of benzylic and allylic silyl ethers in the presence of other silyl ethers. Using an -protected oxime and a catalytic amount of triflic acid instead of iodine/aqueous ammonia is also effective for cyanation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
The azidofunctionalization of alkenes under mild conditions using commercially available starting materials and easily accessible reagents is reported based on a radical-polar crossover strategy. A broad range of alkenes, including vinyl arenes, enamides, enol ethers, vinyl sulfides, and dehydroamino esters, were regioselectively functionalized with an azide and nucleophiles such as azoles, carboxylic acids, alcohols, phosphoric acids, oximes, and phenols. The method led to a more efficient synthesis of 1,2-azidofunctionalized pharmaceutical intermediates when compared to previous approaches, resulting in both reduction of step count and increase in overall yield.
View Article and Find Full Text PDFMol Divers
January 2025
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China.
A series of novel isatin-oxime ether derivatives were designed, synthesized and characterized by H NMR and C NMR and HRMS. These compounds were evaluated for their in vitro cytotoxicity against three human cancer cell lines (A549, HepG2 and Hela) by MTT assay. According to the experimental results, compounds 6a (IC = 0.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
Carbonic anhydrases (CAs) are crucial in regulating various physiological processes in the body. The overexpression of isoforms human carbonic anhydrases (hCA) IX and hCA XII is linked to tumour progression. The selective inhibition of CA IX and CA XII isoforms can result in the development of better cancer treatment strategies.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan.
A site-selective functionalization of a C(sp)-H bond was achieved in the presence of an intrinsically more reactive C(sp)-H bond by controlling the orientation of a directing group via a photo-induced E/Z isomerization of an oxime ether. By combining E/Z isomerization and an electron deficient Cp*Ir(III) catalyst, the scope of oxime ethers in C(sp)-H functionalization was successfully expanded. Based on this strategy, the order of C-H activation was switchable and successive C(sp)-H/C(sp)-H and C(sp)-H/C(sp)-H double functionalizations were accomplished to construct densely functionalized structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!