Sulfur/selenium-containing electron-rich arenes (ERAs) exist in a wide range of both approved and investigational drugs with diverse pharmacological activities. These unique chemical structures and bioactive properties, if combined with the emerging DNA-encoded chemical library (DEL) technique, would facilitate drug and chemical probe discovery. However, it remains challenging, as there is no general DNA-compatible synthetic methodology available for the formation of C-S and C-Se bonds in aqueous solution. Herein, an in-solution direct oxidative coupling procedure that could efficiently integrate sulfur/selenium into the ERA under mild conditions is presented. This method features simple DNA-conjugated electron-rich arenes with a broad substrate scope and a transition-metal free process. Furthermore, this synthetic methodology, examined by a scale-up reaction test and late-stage precise modification in a mock peptide-like DEL synthesis, will enable its utility for the synthesis of sulfur/selenium-containing DNA-encoded libraries and the discovery of bioactive agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8890091 | PMC |
http://dx.doi.org/10.1039/d1sc06268a | DOI Listing |
J Chem Phys
January 2025
Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland.
Understanding the ultrafast vibrational relaxation following photoexcitation of molecules in a condensed phase is essential to predict the outcome and improve the efficiency of photoinduced molecular processes. Here, the vibrational decoherence and energy relaxation of a binuclear complex, [Pt2(P2O5H2)4]4- (PtPOP), upon electronic excitation in liquid water and acetonitrile are investigated through direct adiabatic dynamics simulations. A quantum mechanics/molecular mechanics (QM/MM) scheme is used where the excited state of the complex is modeled with orbital-optimized density functional calculations while solvent molecules are described using potential energy functions.
View Article and Find Full Text PDFNanoscale
January 2025
Chemical and Biomolecular Engineering, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588, USA.
The synergistic optical, electronic, and chemical properties of metal nanoparticles present in close proximity have potential applications in energy, medicine, and sustainability. Fundamental studies and application development based on spontaneous self-assembly of one-dimensional (1D) chains of metal nanoparticles without external organization agencies have been pursued for over four decades. The spontaneous formation of 1D chains in a solution of stabilized spherical nanoparticles may be driven by the emergence of local anisotropy due to dipolar interaction, representing a trapped non-equilibrium state.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
pH-responsive polyamidoamine (PAMAM) dendrimers are used as well-defined building blocks to design light-switchable nano-assemblies in solution. The complex interplay between the photoresponsive di-anionic azo dye Acid Yellow 38 (AY38) and the cationic PAMAM dendrimers of different generations is presented in this study. Electrostatic self-assembly involving secondary dipole-dipole interactions provides well-defined assemblies within a broad size range (10 nm-1 μm) with various shapes.
View Article and Find Full Text PDFChemistry
January 2025
Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena, Laboratory of Organic and Macromolecular Chemistry, GERMANY.
This current study focusses on the investigation of the self-healing abilities of metallopolymers containing different kinds of metal complexes, which were processed by direct digital light processing (DLP) based three-dimensional (3D) printing. For this purpose, 2‑phenoxyethyl acrylate is mixed with ligand-containing monomers either based on triphenylmethyl(trt)-histidine or terpyridine, respectively. Either zinc(II) or nickel(II) salts are successfully applied for a complexation of the ligand monomers in solution and, subsequently, photopolymerization is performed.
View Article and Find Full Text PDFOpen Biol
January 2025
Institute of Physical Chemistry, Polish Academy of Sciences , Warsaw, Poland.
The vertebrate visual cycle hinges on enzymatically converting all--retinol (at-ROL) into 11--retinal (11c-RAL), the chromophore that binds to opsins in photoreceptors, forming light-responsive pigments. When struck by a photon, these pigments activate the phototransduction pathway and initiate the process of vision. The enzymatic isomerization of at-ROL, crucial for restoring the visual pigments and preparing them to receive new light stimuli, relies on various enzymes found in both the photoreceptors and retinal pigment epithelium cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!