Tick-borne encephalitis virus (TBEV) is a zoonotic flavivirus which is endemic in many European and Asian countries. Humans can get infected with TBEV usually ticks, and possible symptoms of the infection range from fever to severe neurological complications such as encephalitis. Vaccines to protect against TBEV-induced disease are widely used and most of them consist of whole viruses, which are inactivated by formaldehyde. Although this production process is well established, it has several drawbacks, including the usage of hazardous chemicals, the long inactivation times required and the potential modification of antigens by formaldehyde. As an alternative to chemical treatment, low-energy electron irradiation (LEEI) is known to efficiently inactivate pathogens by predominantly damaging nucleic acids. In contrast to other methods of ionizing radiation, LEEI does not require substantial shielding constructions and can be used in standard laboratories. Here, we have analyzed the potential of LEEI to generate a TBEV vaccine and immunized mice with three doses of irradiated or chemically inactivated TBEV. LEEI-inactivated TBEV induced binding antibodies of higher titer compared to the formaldehyde-inactivated virus. This was also observed for the avidity of the antibodies measured after the second dose. After viral challenge, the mice immunized with LEEI- or formaldehyde-inactivated TBEV were completely protected from disease and had no detectable virus in the central nervous system. Taken together, the results indicate that LEEI could be an alternative to chemical inactivation for the production of a TBEV vaccine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942778PMC
http://dx.doi.org/10.3389/fimmu.2022.825702DOI Listing

Publication Analysis

Top Keywords

low-energy electron
8
electron irradiation
8
tick-borne encephalitis
8
encephalitis virus
8
alternative chemical
8
tbev vaccine
8
tbev
7
irradiation tick-borne
4
virus
4
virus protective
4

Similar Publications

Radionuclides used for imaging and therapy can show high molecular specificity in the body with appropriate targeting ligands. We hypothesized that local energy delivered by molecularly targeted radionuclides could chemically activate prodrugs at disease sites while avoiding activation in off-target sites of toxicity. As proof of principle, we tested whether this strategy of radionuclide-induced drug engagement for release (RAiDER) could locally deliver combined radiation and chemotherapy to maximize tumor cytotoxicity while minimizing off-target exposure to activated chemotherapy.

View Article and Find Full Text PDF

The rapid development of delivery systems for cosmetics has revealed two critical challenges in the field: enhancing the solubility of active ingredients and ensuring the stability of natural materials used in cosmetics. Nanoemulsion technology has emerged as an indispensable solution for addressing these challenges, not only enhancing the stability of cosmetics but also improving the solubility of pharmaceuticals and active ingredients with poor solubility. Nanoemulsion formulations have reinforced stability and amended the bioavailability of hydrophobic drugs.

View Article and Find Full Text PDF

In contrast to the traditional perspective that thermal fluctuations are insignificant in surface dynamics, here we report their influence on surface reaction dynamics. Using real-time low-energy electron microscopy imaging of NiAl(100) under both vacuum and O atmospheres, we demonstrate that transient temperature variations substantially alter the direction of atom diffusion between the surface and bulk, leading to markedly different oxidation outcomes. During heating, substantial outward diffusion of atoms from the bulk to the surface results in step growth.

View Article and Find Full Text PDF

Efficient and Robust Europium(III)-Based Hybrid Lanthanide Scintillators for Advanced X-ray Imaging.

Angew Chem Int Ed Engl

January 2025

South China Normal University, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, Panyu University Mega Center, 510006, Guangzhou, CHINA.

Scintillators that convert ionizing radiation into low-energy photons are essential for medical diagnostics and industrial inspections. Despite advances in X-ray scintillators, challenges remain in achieving high efficiency, environmental compatibility, stability, and flexibility. Here, we present experimental investigations of a new type of europium(III)-based hybrid ternary complex scintillators for improved X-ray detection and imaging.

View Article and Find Full Text PDF

Multispectral Integrated Black Arsenene Phototransistors for High-Resolution Imaging and Enhanced Secure Communication.

ACS Nano

December 2024

State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai 200083, China.

The demand for broadband, room-temperature infrared, and terahertz (THz) detectors is rapidly increasing owing to crucial applications in telecommunications, security screening, nondestructive testing, and medical diagnostics. Current photodetectors face significant challenges, including high intrinsic dark currents and the necessity for cryogenic cooling, which limit their effectiveness in detecting low-energy photons. Here, we introduce a high-performance ultrabroadband photodetector operating at room temperature based on two-dimensional black arsenene (b-As) nanosheets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!