Since the onset of the COVID-19 pandemic, a large number of flow visualization procedures have been proposed to assess the effect of personal protective equipment on respiratory flows. This study suggests infrared thermography as a beneficial visualization technique because it is completely noninvasive and safe and, thus, can be used on live individuals rather than mannequins or lung simulators. Here, we examine the effect of wearing either of three popular face coverings (a surgical mask, a cloth mask, or an N95 respirator with an exhalation valve) on thermal signatures of exhaled airflows near a human face while coughing, talking, or breathing. The flow visualization using a mid-wave infrared camera captures the dynamics of thermal inhomogeneities induced by increased concentrations of carbon dioxide in the exhaled air. Thermal images demonstrate that both surgical and cloth face masks allow air leakage through the edges and the fabric itself, but they decrease the initial forward velocity of a cough jet by a factor of four. The N95 respirator, on the other hand, reduces the infrared emission of carbon dioxide near the person's face almost completely. This confirms that the N95-type mask may indeed lead to excessive inhalation of carbon dioxide as suggested by some recent studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8939526 | PMC |
http://dx.doi.org/10.1063/5.0076230 | DOI Listing |
PLoS One
January 2025
Department of Anesthesiology, The Second Affiliated Hospital, The Army Military Medical University, Chongqing, China.
Background: Rapid sequence induction intubation (RSII) is commonly used in emergency surgeries for patients at high risk of aspiration. However, these patients are more susceptible to hypoxemia during the RSII process. High-flow nasal cannula (HFNC) oxygen therapy has emerged as a potential alternative to traditional face mask (FM) ventilation pre- and apneic oxygenation.
View Article and Find Full Text PDFPLoS One
January 2025
Cooperative Agricultural Research Center, College of Agriculture, Food and Natural Resources, Prairie View A&M University, Prairie View, TX, United States of America.
The significance of forests in absorbing and storing carbon plays a crucial role in international greenhouse gas policies outlined by the United Nations Framework Convention for Climate Change (UNFCC). This study was conducted in a typical tropical moist forest of Ethiopia to assess its carbon stock, a critical issue in climate policy. The study domain was divided into six strata using elevation criteria.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China.
The carbon sink function performed by the different vegetation types along the environmental gradient in coastal zones plays a vital role in mitigating climate change. However, inadequate understanding of its spatiotemporal variations across different vegetation types and associated regulatory mechanisms hampers determining its potential shifts in a changing climate. Here, we present long-term (2011-2022) eddy covariance measurements of the net ecosystem exchange (NEE) of CO at three sites with different vegetation types (tidal wetland, nontidal wetland, and cropland) in a coastal zone to examine the role of vegetation type on annual carbon sink strength.
View Article and Find Full Text PDFACS Nano
January 2025
Songshan Lake Materials Laboratory (SLAB), Dongguan 523808, P. R. China.
Electrocatalytic CO reduction into high-value multicarbon products offers a sustainable approach to closing the anthropogenic carbon cycle and contributing to carbon neutrality, particularly when renewable electricity is used to power the reaction. However, the lack of efficient and durable electrocatalysts with high selectivity for multicarbons severely hinders the practical application of this promising technology. Herein, a nanoporous defective AuCu single-atom alloy (De-AuCu SAA) catalyst is developed through facile low-temperature thermal reduction in hydrogen and a subsequent dealloying process, which shows high selectivity toward ethylene (CH), with a Faradaic efficiency of 52% at the current density of 252 mA cm under a potential of -1.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, USA.
The electrochemical oxidation of alcohol molecules has gained significance as a key anode reaction, offering an alternative to the oxygen evolution reaction (OER) for hydrogen (H) production and carbon dioxide (CO) reduction. The (photo)electrochemical oxidation of benzyl alcohol and its derivatives serves as an important model system, not only because benzyl alcohol oxidation is a critical industrial process, but also because it offers valuable insights into electrocatalytic biomass conversion. Tailoring this reaction through electrochemical and photoelectrochemical methods using heterogeneous noble and transition metal electrocatalysts presents a green approach and the potential for uncovering new reaction mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!