AI Article Synopsis

  • * A new reconstruction algorithm using deep learning is introduced to speed up MRI-guided NIRST, validated with simulation and real patient imaging data for breast cancer analysis.
  • * The algorithm uses both diffused optical signals and MRI images as inputs to a neural network, effectively assessing the concentrations of key substances and showing improved image quality for differentiating between malignant and benign breast tumors.

Article Abstract

Non-invasive near-infrared spectral tomography (NIRST) can incorporate the structural information provided by simultaneous magnetic resonance imaging (MRI), and this has significantly improved the images obtained of tissue function. However, the process of MRI guidance in NIRST has been time consuming because of the needs for tissue-type segmentation and forward diffuse modeling of light propagation. To overcome these problems, a reconstruction algorithm for MRI-guided NIRST based on deep learning is proposed and validated by simulation and real patient imaging data for breast cancer characterization. In this approach, diffused optical signals and MRI images were both used as the input to the neural network, and simultaneously recovered the concentrations of oxy-hemoglobin, deoxy-hemoglobin, and water via end-to-end training by using 20,000 sets of computer-generated simulation phantoms. The simulation phantom studies showed that the quality of the reconstructed images was improved, compared to that obtained by other existing reconstruction methods. Reconstructed patient images show that the well-trained neural network with only simulation data sets can be directly used for differentiating malignant from benign breast tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952193PMC
http://dx.doi.org/10.1364/optica.446576DOI Listing

Publication Analysis

Top Keywords

near-infrared spectral
8
spectral tomography
8
neural network
8
deep-learning based
4
based image
4
image reconstruction
4
reconstruction mri-guided
4
mri-guided near-infrared
4
tomography non-invasive
4
non-invasive near-infrared
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!