Rice is a major cereal crop, negatively impacted by soil-salinity, both in terms of plant growth as well as productivity. Salinity tolerant rice varieties have been developed using conventional breeding approaches, however, there has been limited success which is primarily due to the complexity of the trait, low yield, variable salt stress response and availability of genetic resources. Furthermore, the narrow genetic base is a hindrance for further improvement of the rice varieties. Therefore, there is a greater need to screen available donor germplasm in rice for salinity tolerance related genes and traits. In this regard, genomics based techniques are useful for exploring new gene resources and QTLs. In rice, the vast allelic diversity existing in the wild and cultivated germplasm needs to be explored for improving salt tolerance. In the present review, we provide an overview of the allelic diversity in the Quantitative Trait Loci (QTLs) like Saltol, qGR6.2, qSE3 and RNC4 as well as genes like , () and (salt tolerance level 1 gene) related to salt tolerance in rice. We have also discussed approaches for developing salt-tolerant cultivars by utilizing the effective QTLs or genes/alleles in rice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8886628 | PMC |
http://dx.doi.org/10.2174/1389202922666211005121412 | DOI Listing |
Am J Hum Genet
January 2025
Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA; Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA. Electronic address:
Genetic summary data are broadly accessible and highly useful, including for risk prediction, causal inference, fine mapping, and incorporation of external controls. However, collapsing individual-level data into summary data, such as allele frequencies, masks intra- and inter-sample heterogeneity, leading to confounding, reduced power, and bias. Ultimately, unaccounted-for substructure limits summary data usability, especially for understudied or admixed populations.
View Article and Find Full Text PDFIsland ecosystems, particularly vulnerable to environmental challenges, host many endangered native species. Diadromous fish, in particular, are threatened throughout their marine and freshwater habitats. The conservation of these species requires an in-depth understanding of their genetic diversity and structure, to better understand their adaptive potential.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China.
Phosphorus (P) is an essential yet frequently deficient plant nutrient. Optimizing P distribution and recycling between tissues is vital for improving P utilization efficiency (PUE). Yet, the mechanisms underlying the transport and re-translocation of P within plants remain unclear.
View Article and Find Full Text PDFSci China Life Sci
January 2025
State Key Laboratory of Genetic Engineering, Lab for Evolutionary Synthesis, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, China.
Human leukocyte antigen (HLA) genes in the major histocompatibility complex (MHC) region are crucial for immunity and are associated with numerous diseases and phenotypes. The MHC region's complexity and high genetic diversity make it challenging to analyze using short-read sequencing (SRS) technology. We sequence the MHC region of 100 Han Chinese individuals using both long-read sequencing (LRS) and SRS platforms at approximately 30X coverage to study genetic alterations and their potential functional impacts.
View Article and Find Full Text PDFSports Med
January 2025
Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
Background: Identification of genetic alleles associated with both Alzheimer's disease (AD) and concussion severity/recovery could help explain the association between concussion and elevated dementia risk. However, there has been little investigation into whether AD risk genes associate with concussion severity/recovery, and the limited findings are mixed.
Objective: We used AD polygenic risk scores (PRS) and APOE genotypes to investigate any such associations in the NCAA-DoD Grand Alliance CARE Consortium (CARE) dataset.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!