The hepatitis E virus (HEV) can cause acute and chronic hepatitis in humans. Infections with the zoonotic HEV genotype 3, which can be transmitted from infected wild boar and deer to humans, are increasingly detected in Europe. To investigate the spatiotemporal HEV infection dynamics in wild animal populations, a study involving 3572 samples of wild boar and three deer species from six different geographic areas in Germany over a 4-year period was conducted. The HEV-specific antibody detection rates increased between 2013-2014 and 2016-2017 in wild boar from 9.5% to 22.8%, and decreased in deer from 1.1% to 0.2%. At the same time, HEV-RNA detection rates increased in wild boar from 2.8% to 13.3% and in deer from 0.7% to 4.2%. Marked differences were recorded between the investigated areas, with constantly high detection rates in one area and new HEV introductions followed by increasing detection rates in others. Molecular typing identified HEV subtypes 3c, 3f, 3i and a putative new subtype related to Italian wild boar strains. In areas, where sufficient numbers of positive samples were available for further analysis, a specific subtype dominated over the whole observation period. Phylogenetic analysis confirmed the close relationship between strains from the same area and identified closely related human strains from Germany. The results suggest that the HEV infection dynamics in wild animals is dependent on the particular geographical area where area-specific dominant strains circulate over a long period. The virus can spread from wild boar, which represent the main wild animal reservoir, to deer, and generally from wild animals to humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tbed.14533 | DOI Listing |
BMC Genomics
January 2025
Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
Background: Since their domestication, recent inbreeding together with intensive artificial selection and population bottlenecks have allowed the prevalence of deleterious mutations and the increase of runs-of-homozygosity (ROH) in domestic pigs. This makes pigs a good model to understand the genetic underpinnings of inbreeding depression.
Results: Here we integrated a comprehensive dataset comprising 7239 domesticated pigs and wild boars genotyped by single nucleotide polymorphism (SNP) chips, along with phenotypic data encompassing growth, reproduction and disease-associated traits.
Int J Parasitol Parasites Wildl
April 2025
Institute of Veterinary Medicine, Georg-August-University of Goettingen, Burckhardtweg 2, 37077, Goettingen, Germany.
Infections with soil-transmitted helminths pose a significant threat to wildlife in enclosures, where transmission of these parasitic larvae is easier due to the limited space. Nematophagous fungi offer a promising solution as they can naturally control these nematodes. In this study, three nematophagous fungi (, , ) purchased from the non-profit global biological resource center ATCC were tested for their suitability as biological control agents.
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
Faculty of Agriculture, Department of Animal Science, Isparta University of Applied Sciences, Isparta, Türkiye.
The objectives of this study were to evaluate different machine learning algorithms for predicting body weight (BW) in Sujiang pigs using the following morphological traits: age, body length (BL), backfat thickness (BFT), chest circumference (CC), body height (BH), chest width (CW), and hip width (HW). Additionally, this study also investigated which machine learning algorithms could accurately and efficiently predict body weight in pigs using a limited set of morphological traits. For this purpose, morphological measurements of 365 mature (180 ± 5 days) Sujiang pigs from the Jiangsu Sujiang Pig Breeding Farm in Taizhou, Jiangsu Province, China were used.
View Article and Find Full Text PDFVirol Sin
January 2025
Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, China. Electronic address:
Vet Med Sci
January 2025
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
Background: Clostridium butyricum is a probiotic widely used in animal husbandry, and there is evidence to suggest that it can alleviate intestinal inflammation in pigs and may be related to its lipoteichoic acid (LTA), but the mechanism is still unclear.
Objective: This study aimed to determine the regulatory effect and potential mechanism of C. butyricum LTA on LPS-stimulated inflammation in intestinal porcine epithelial line-J2 (IPEC-J2).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!