Glycosylation is key for enhancing drug recognition into spike glycoprotein of SARS-CoV-2.

Comput Biol Chem

Laboratório de Modelagem Computacional, Instituto de Ciências Exatas, Universidade Federal de Alfenas, Brazil; High Performance & Quantum Computing Labs, Waterloo, Canada. Electronic address:

Published: June 2022

The emergence of COVID-19 caused by SARS-CoV-2 and its spread since 2019 represents the major public health problem worldwide nowadays, which has generated a high number of infections and deaths. The spike protein (S protein) is the most studied protein of SARS-CoV-2, and key to host-cell entry through ACE2 receptor. This protein presents a large pattern of glycosylations with important roles in immunity and infection mechanisms. Therefore, understanding key aspects of the molecular mechanisms of these structures, during drug recognition in SARS-CoV-2, may contribute to therapeutic alternatives. In this work, we explored the impact of glycosylations on the drug recognition on two domains of the S protein, the receptor-binding domain (RBD) and the N-terminal domain (NTD) through molecular dynamics simulations and computational biophysics analysis. Our results show that glycosylations in the S protein induce structural stability and changes in rigidity/flexibility related to the number of glycosylations in the structure. These structural changes are important for its biological activity as well as the correct interaction of ligands in the RBD and NTD regions. Additionally, we evidenced a roto-translation phenomenon in the interaction of the ligand with RBD in the absence of glycosylation, which disappears due to the influence of glycosylation and the convergence of metastable states in RBM. Similarly, glycosylations in NTD promote an induced fit phenomenon, which is not observed in the absence of glycosylations; this process is decisive for the activity of the ligand at the cryptic site. Altogether, these results provide an explanation of glycosylation relevance in biophysical properties and drug recognition to S protein of SARS-CoV-2, which must be considered in the rational drug development and virtual screening targeting S protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8941845PMC
http://dx.doi.org/10.1016/j.compbiolchem.2022.107668DOI Listing

Publication Analysis

Top Keywords

drug recognition
16
protein
8
protein sars-cov-2
8
glycosylations
6
drug
5
sars-cov-2
5
glycosylation
4
glycosylation key
4
key enhancing
4
enhancing drug
4

Similar Publications

Substrate transport and drug interaction of human thiamine transporters SLC19A2/A3.

Nat Commun

December 2024

ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China.

Thiamine and pyridoxine are essential B vitamins that serve as enzymatic cofactors in energy metabolism, protein and nucleic acid biosynthesis, and neurotransmitter production. In humans, thiamine transporters SLC19A2 and SLC19A3 primarily regulate cellular uptake of both vitamins. Genetic mutations in these transporters, which cause thiamine and pyridoxine deficiency, have been implicated in severe neurometabolic diseases.

View Article and Find Full Text PDF

The mechanism of discriminative aminoacylation by isoleucyl-tRNA synthetase based on wobble nucleotide recognition.

Nat Commun

December 2024

State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

The faithful charging of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases (AARSs) determines the fidelity of protein translation. Isoleucyl-tRNA synthetase (IleRS) distinguishes tRNA from tRNA solely based on the nucleotide at wobble position (N34), and a single substitution at N34 could exchange the aminoacylation specificity between two tRNAs. Here, we report the structural and biochemical mechanism of N34 recognition-based tRNA discrimination by Saccharomyces cerevisiae IleRS (ScIleRS).

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a systemic autoimmune disorder with both articular and extra-articular manifestations, including rare pulmonary complications. We report a case of a 65-year-old male with long-standing RA who developed multiple cavitary pulmonary nodules following prolonged leflunomide therapy. Diagnostic evaluation excluded infectious, neoplastic, and autoimmune causes.

View Article and Find Full Text PDF

Nanotechnology in cancer therapy has significantly advanced treatment precision, effectiveness, and safety, improving patient outcomes and personalized care. Engineered smart nanoparticles and cell-based therapies are designed to target tumor cells, precisely sensing the tumor microenvironment (TME) and sparing normal cells. These nanoparticles enhance drug accumulation in tumors by solubilizing insoluble compounds or preventing their degradation, and they can also overcome therapy resistance and deliver multiple drugs simultaneously.

View Article and Find Full Text PDF

AQP3-liposome@GelMA promotes overloaded-induced degenerated disc regeneration via IBSP/ITG αVβ3/AKT pathway.

Int J Biol Macromol

December 2024

Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China; Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China. Electronic address:

Medical and conservative treatments for intervertebral disc degeneration (IDD) primarily focus on alleviating symptoms. However, effective curative therapies that promote disc regeneration remain lacking. Recent advancements in disc repair materials offer a potential solution, but identifying effective cytokines for regeneration and developing efficient drug delivery systems are crucial for success.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!