Electrocoagulation treatment of raw palm oil mill effluent: Optimization process using high current application.

Chemosphere

Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia. Electronic address:

Published: July 2022

In the electrocoagulation wastewater treatment process, extremely polluted water treatment requires an effective technique, and using high current is one of those. This study aims to optimize electrocoagulation parameters such as operation time, electrodes gap and the initial pH by applying high current intensity to treat palm oil mill effluent (POME) via Box-Behnken design (BBD) method. Chemical oxygen demand (COD), biological oxygen demand (BOD), and suspended solids (SS) were used as the response variables in the quadratic polynomial model. Most of the selected models in the analysis of variance (ANOVA) have shown significant results. A high connection between the parameters and dependent variables was surprisingly discovered in this study which the obtained value of R for removal percentage of COD, BOD and SS were 0.9975, 0.9984 and 0.9979 respectively. Optimal removal was achieved at 19.07 A of current intensity (equivalent to 542 mA/cm of current density), 44.97 min of treatment time, 8.60 mm of inter-electrode distance and 4.37 of pH value, resulted in 97.21%, 99.26% and 99.00% of COD, BOD and SS removal respectively. This optimized scheme of operating parameters combination offers an alternate choice for enhancing the treatment efficiency of POME and also can be a benchmark for other researchers to treat highly polluted wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.134387DOI Listing

Publication Analysis

Top Keywords

high current
12
palm oil
8
oil mill
8
mill effluent
8
current intensity
8
oxygen demand
8
cod bod
8
current
5
electrocoagulation treatment
4
treatment raw
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!