Charge-controllable mussel-inspired magnetic nanocomposites for selective dye adsorption and separation.

Chemosphere

Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hong Kong, China; Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, PR China. Electronic address:

Published: August 2022

Magnetic polydopamine (PDA) nanocomposites were prepared with a facile and sustainable synthetic method. The as-synthesized polymer-based hybrid composites inherited the intrinsic adhesiveness contributed by catechol and amino moieties of PDA as well as the magnetic property of FeO. With the unique properties of PDA, the surface charges of FeO@PDA could be easily tuned by pH for smart adsorption-desorption behaviors. Four commercially available dyestuffs including crystal violet, rhodamine B, direct blue 71 and orange G with different structures and surface charges in solution were selected to investigate the adsorption ability and universality of FeO@PDA in wastewater treatment. It was found that the nanocomposites could successfully adsorb these cationic and anionic dyes under suitable pH conditions. This confirmed the ability of the nanoadsorbents for the removal of common textile dyes. The dispersed magnetic nanoadsorbents also demonstrated the ease of collection from dye mixtures, and the possibility of reusing them for several cycles. Selective dye separation was found to be achievable via simple charge control without large consumption of organic solvent and energy. These bio-inspired nanocomposite adsorbents have shown high potential in wastewater treatment and selective recovery of dye waste, especially for wastewater containing ionic dyes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.134404DOI Listing

Publication Analysis

Top Keywords

selective dye
8
surface charges
8
wastewater treatment
8
charge-controllable mussel-inspired
4
magnetic
4
mussel-inspired magnetic
4
magnetic nanocomposites
4
nanocomposites selective
4
dye
4
dye adsorption
4

Similar Publications

Background: Protein misfolding is a key pathological phenomenon driving neurodegenerative diseases that affect millions of people. Visualizing this misfolding process with smart imaging probes would greatly facilitate early diagnosis, etiology elucidation, disease progression monitoring, and drug discovery of neurodegeneration. Although numerous probes have been reported, several unmet needs still exist.

View Article and Find Full Text PDF

Peroxynitrite (ONOO/ONOOH) is a short-lived but highly reactive species that is formed in the diffusion-controlled reaction between nitric oxide and the superoxide radical anion. It can oxidize certain biomolecules and has been considered as a key cellular oxidant formed under various pathophysiological conditions. It is crucial to selectively detect and quantify ONOO to determine its role in biological processes.

View Article and Find Full Text PDF

Introduction Endodontic re-infections primarily occur due to the ingress of bacteria and their toxins through an incomplete seal following obturation. A variety of sealers have been developed to achieve effective integration with the different obturation materials and dentinal tubules. To choose the right endodontic sealer and application for each clinical instance, one must be aware of the attributes of the various sealers commonly used in clinical practice.

View Article and Find Full Text PDF

Infections caused by persistent, drug-resistant bacteria pose significant challenges in inflammation treatment, often leading to severe morbidity and mortality. Herein, the photosensitizer rhodamine derivatives are selected as the light-trapping dye and the electron-rich substituent N-nitrosoaminophen as the nitric oxide (NO)-releasing component to develop a multifunctional (deep) red-light activatable NO photocage/photodynamic prodrug for efficient treatment of wounds and diabetic foot infections. The prodrug, RhB-NO-2 integrates antimicrobial photodynamic therapy (aPDT), NO sterilization, and NO-mediated anti-inflammatory properties within a small organic molecule and is capable of releasing NO and generating Reactive oxygen species (ROS) when exposed to (deep) red laser (660 nm).

View Article and Find Full Text PDF

Background: Treatment of deep carious lesions poses significant challenges in dentistry, as complete lesion removal risks compromising pulp vitality, while selective removal often reduces the longevity of restorations. Herein, we propose a minimally invasive approach using High-Intensity Focused Ultrasound (HIFU) for microscale removal of carious dentine. Concurrently, HIFU's antimicrobial effects against associated cariogenic biofilms and the corresponding thermal and biological impacts on surrounding tissues were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!