Plasmodium falciparum-infected erythrocytes (IRBCs) synthesize several histidine-rich proteins (HRPs) that accumulate high levels of [3H]histidine but very low levels of amino acids such as [3H]isoleucine or [35S]methionine. We prepared a monoclonal antibody which reacts specifically with one of these HRPs (Pf HRP II) and studied the location and synthesis of this protein during the parasite's intracellular growth. With the knob-positive Malayan Camp strain of P. falciparum, the monoclonal antibody identified a multiplet of protein bands with major species at Mr 72,000 and 69,000. Pf HRP II synthesis began with immature parasites (rings) and continued through the trophozoite stage. The Mr 72,000 band of Pf HRP II, but not the faster moving bands of the multiplet, was recovered as a water-soluble protein from the culture supernatant of intact IRBCs. Approximately 50% of the total [3H]histidine radioactivity incorporated into the Mr 72,000 band was extracellular between 2 and 24 h of culture. Immunofluorescence and cryothin-section immunoelectron microscopy localized Pf HRP II to several cell compartments including the parasite cytoplasm, as concentrated "packets" in the host erythrocyte cytoplasm and at the IRBC membrane. Our results provide evidence for an intracellular route of transport for a secreted malarial protein from the parasite through several membranes and the host cell cytoplasm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114335PMC
http://dx.doi.org/10.1083/jcb.103.4.1269DOI Listing

Publication Analysis

Top Keywords

plasmodium falciparum-infected
8
falciparum-infected erythrocytes
8
monoclonal antibody
8
72000 band
8
protein
5
hrp
5
secretion malarial
4
malarial histidine-rich
4
histidine-rich protein
4
protein hrp
4

Similar Publications

Malaria is a major public healthcare concern worldwide, representing a leading cause of death in specific regions. The gold standard for diagnosis is microscopic analysis, but this requires a laboratory setting, trained staff, and infrastructure and is therefore typically slow and dependent on the experience of the technician. This study introduces, for the first time, a biomimetic sensing platform for the direct detection of the disease.

View Article and Find Full Text PDF

Placental malaria is characterized by the massive accumulation and sequestration of infected erythrocytes in the placental intervillous blood spaces, causing severe birth outcomes. The variant surface antigen VAR2CSA is associated with Plasmodium falciparum sequestration in the placenta via its capacity to adhere to chondroitin sulfate A. We have previously shown that the extracellular region of VAR2CSA is phosphorylated on several residues and that the phosphorylation enhances the adhesive properties of CSA-binding infected erythrocytes.

View Article and Find Full Text PDF

Plasmodium falciparum is a major cause of severe malaria. This protozoan infects human red blood cells and secretes large quantities of histidine-rich protein 2 (PfHRP2) into the bloodstream, making it a well-known diagnostic marker. Here, however, we identified PfHRP2 as a pathogenic factor produced by P.

View Article and Find Full Text PDF

Background And Objectives: Malaria risk deferral policies are important for mitigating the risk of transfusion-transmitted malaria and apply to all transfusable components, including plasma. While donors of plasma components are deferred for malaria risk in the United States, the viability of intraerythrocytic Plasmodium falciparum parasites present in human plasma components stored under different temperatures and durations has not been previously reported.

Materials And Methods: We spiked human plasma with a low level of ring-stage P.

View Article and Find Full Text PDF

The spread of molecular markers of artemisinin partial resistance and diagnostic evasion in Eritrea: a retrospective molecular epidemiology study.

Lancet Microbe

December 2024

Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Gallipolli Barracks, Enoggera, QLD, Australia; Australian Defence Force Malaria and Infectious Disease Institute Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. Electronic address:

Background: Eritrea was the first African country to discontinue the use of histidine rich protein 2 (HRP2)-detecting rapid diagnostic tests (RDTs) for malaria diagnosis following reports of a high prevalence of pfhrp2/3-deleted Plasmodium falciparum parasites causing false-negative results in the country. Eritrea was also the first African country to report partial artemisinin resistance due to the P falciparum kelch13 (pfk13) Arg622Ile mutation. We aimed to characterise the spatial distribution of pfk13 mutants and their interactions with pfhrp2/3 deletions in Eritrea and to assess the role of the use of HRP2-detecting RDTs and antimalarial (artesunate-amodiaquine) therapy in the spread of the two variants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!