Objective: COVID-19 is a multisystem disease that causes endothelial dysfunction and organ damage. Aim of the study was to evaluate the microvascular status in COVID-19 survivors with past different disease severity, in comparison with age and sex-matched primary Raynaud's phenomenon (PRP) patients and control subjects (CNT), including possible effects of concomitant therapies.
Methods: Sixty-one COVID-19 survivors (mean age 58 ± 13 years, mean days from disease onset 126 ± 53 and mean days from recovery 104 ± 53), thirty-one PRP patients (mean age 59 ± 15 years, mean disease duration 11 ± 10 years) and thirty CNT (mean age 58 ± 13 years) underwent nailfold videocapillaroscopy (NVC) examination. The following capillaroscopic parameters were searched and scored (0-3): dilated capillaries, giant capillaries, isolated microhemorrhages, capillary ramifications (angiogenesis) and capillary number, including absolute capillary number per linear millimeter at the nailfold bed.
Results: The mean nailfold capillary number per linear millimeter was significantly lower in COVID-19 survivors when compared with PRP patients and CNT (univariate and multivariate analysis p < 0.001). On the contrary, COVID-19 survivors showed significantly less isolated microhemorrhages than PRP patients and CNT (univariate and multivariate analysis, p = 0.005 and p = 0.012, respectively). No statistically significant difference was observed between COVID-19 survivors and control groups concerning the frequency of dilated capillaries and capillary ramifications. COVID-19 selective therapies showed a promising trend on preserving capillary loss and deserving further investigations.
Conclusions: SARS-CoV-2 seems to mainly induce a significant loss of capillaries in COVID-19 survivors at detailed NVC analysis in comparison to controls. The presence of a significant reduced score for isolated microhaemorrhages in COVID-19 survivors deserves further analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942583 | PMC |
http://dx.doi.org/10.1016/j.mvr.2022.104361 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!