Improved estimation of nitrogen dynamics in paddy surface water in China.

J Environ Manage

Hubei Provincial Engineering Research Center of Non-Point Source Pollution Control, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China. Electronic address:

Published: June 2022

Paddy surface water is the direct source of artificial drainage and surface runoff leading to N loss from rice paddy fields. Quantifying the N dynamics in paddy surface water on a large scale is challenging because of model deficiencies and the limitations of field measurements. This study analyzed the N dynamics and the influencing factors in paddy surface water in the three main Chinese rice-growing regions: Northeast Plain, Yangtze River Basin, and Southeast Coast. An improved first-order kinetic model was proposed to evaluate the total nitrogen (TN) dynamics at a countrywide scale by improving the calculation method of the initial TN concentration (C) and providing the optimum value of attenuation coefficient (k). The results show that: (1) the average reduction rate of TN concentration on the 7th day after fertilization increased with the growth period (85%, 90%, and 95% during the basal, tillering, and panicle fertilization periods, respectively); (2) the attenuation coefficient k for the growth periods was ranked as follows: panicle fertilization period > tillering fertilization period > basal fertilization period. The Yangtze River Basin had the highest average k value (0.31-0.34), followed by the Southeast Coast (0.24-0.41) and Northeast Plain (0.22-0.30); and (3) the improved first-order kinetic model performed well in the N dynamics estimation (R > 0.6). High TN concentration with high fertilizer application amounts and precipitation caused the Yangtze River Basin to have a high N runoff loss risk. The proposed universal model realizes the simulation of N dynamics from a single site to multi-sites while greatly saving multi-site monitoring costs. This study provides a basis for effectively optimizing N management and preventing N loss in rice paddies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.114932DOI Listing

Publication Analysis

Top Keywords

paddy surface
16
surface water
16
yangtze river
12
river basin
12
nitrogen dynamics
8
dynamics paddy
8
loss rice
8
northeast plain
8
southeast coast
8
improved first-order
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!