Morphological modulation of iron carbide embedded nitrogen-doped hierarchically porous carbon by manganese doping as highly efficient bifunctional electrocatalysts for overall water splitting.

J Colloid Interface Sci

Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China. Electronic address:

Published: July 2022

In the development of water splitting, the sluggish electrocatalytic kinetics of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) have restricted their energy conversion efficiencies. Along with the continuous rise in the prices of noble metals and transition metals (such as cobalt and nickel), constructing high-efficiency HER/OER catalysts based on low cost transition metals, such as iron and manganese, is becoming more meaningful in developing industrialized water splitting devices. In this paper, in the absence of a template or active agent, three-dimensional, hierarchically porous FeMn nanoparticles (NPs) were embedded and nitrogen-doped carbon materials (denoted as FeMn@NC; x:y, representing the molar ratio of Fe:Mn) were successfully prepared via pyrolysis of corresponding precursors containing different metallic salt components. Various morphological, structural, and chemical characterization analysis demonstrate that at an Fe:Mn molar ratio of 3:1, the optimal FeMn@NC material shows high graphitization degree, rich mesoporous structures, a large surface area, and abundant carbon defects/edges, which promote the uniform dispersion of pyridinic-N (pyridinic-N-metal), graphitic-N, carbon oxygen bonds (CO), manganese oxide (MnO) nanocrystals, and FeC NPs-embedded, N-doped carbon sheet (FeC@NC) active sites. In alkaline conditions, the HER onset potentials (E) and potentials recorded at 10 mA cm (E) of the optimal FeMn@NC are just 84.8 and 156 mV more negative than those of 20 wt% platinum carbon (Pt/C). Meanwhile, the OER E and E values of the optimal FeMn@NC are just 8 and 18.7 mV more positive than those of RuO. Furthermore, optimized FeMn@NC catalysts were assembled into a water splitting cell, where the catalytic current density achieves 10 mA cm at a low voltage of 1.6287 V (with superior catalytic stability), which is just 24.9 mV higher than that of the (-) 20 wt% Pt/C||RuO (+) benchmark (1.6038 V) under the same conditions. This work describes the regulating efficiency of Mn toward growing mesopores and opens new possibilities for the development of novel carbonaceous catalysts with excellent hydroxide catalytic efficiencies based on low cost Mn/Fe elements.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.03.045DOI Listing

Publication Analysis

Top Keywords

water splitting
16
optimal femn@nc
12
embedded nitrogen-doped
8
hierarchically porous
8
evolution reaction
8
transition metals
8
based low
8
low cost
8
molar ratio
8
carbon
6

Similar Publications

Sprayed Aqueous Microdroplets for Spontaneous Synthesis of Functional Microgels.

Angew Chem Int Ed Engl

January 2025

DWI at RWTH Aachen, Macromolecular Chemistry, Pauwelsstrasse 8, 52056, Aachen, GERMANY.

The development of sustainable synthesis route to produce functional and bioactive polymer colloids has attracted much attention. Most strategies are based on the polymerization of monomers or crosslinking of prepolymers by enzyme- or cell-mediated reactions or specific catalysts in confined emulsions. Herein, a facile solution spray method was developed for spontaneous synthesis of microgels without use of confined emulsion, additional initiators/catalysts and deoxygenation, which addresses the challenges in traditional microgel synthesis.

View Article and Find Full Text PDF

Introduction: CLN8-Batten disease is a rare neurodegenerative disorder characterized phenotypically by progressive deterioration of motor and cognitive abilities, visual symptoms, epileptic seizures, and premature death. Mutations in CLN8 result in characteristic Batten disease symptoms and brain-wide pathology including accumulation of lysosomal storage material, gliosis, and neurodegeneration. Recent investigations of other subtypes of Batten disease (CLN1, CLN3, CLN6) have emphasized the influence of biological sex on disease and treatment outcomes; however, little is known about sex differences in the CLN8 subtype.

View Article and Find Full Text PDF

Alkali metal doping is a new and promising approach to enhance the photo/electrocatalytic activity of NiS-based catalyst systems. This work investigates the impact of sodium on the structural, electronic, and catalytic properties of NiS. Comprehensive characterization techniques demonstrate that Na-doping causes significant changes in the NiS lattice and surface chemistry translating into a larger bandgap than NiS.

View Article and Find Full Text PDF

The performance of heterogeneous catalysis, specifically photochemical and electrochemical hydrogen evolution reaction fundamentally relies upon the prudent choice of catalytic systems with ideal optoelectronic and surface properties. Progressive research in materials processing has hinted at the large-scale applicability of 2D materials for achieving higher activity in the HER process. Among 2D materials, transition metal chalcogenides have emerged as the advanced materials to enhance the rate of HER on account of their layered structure and chalcogen-sites that exhibit favourable hydrogen binding energies.

View Article and Find Full Text PDF

The utilization of zinc oxide nanoparticles is thought to augment wound healing because of their antibacterial characteristics and capacity to stimulate cellular regeneration, especially in instances of minor burn injuries. On the other hand, it has been shown that tissue regeneration is aided by low-power laser therapy via photobiomodulation. Zinc oxide nanoparticles and low-power laser therapy are the two therapeutic modalities that will be compared in this study in order to assess how well they promote healing after burn injury and provide important new information on improved wound care techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!