Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Selectively probing specific molecules in complex mixtures with nuclear magnetic resonance promises new insights into molecular structures or molecular interaction. Such a study often can be further facilitated when two or more objects in chemical moieties of interest can be precisely targeted. Herein, we proposed a novel method to implement the multiple-targeting signal selection by optimal control of the spin singlets of two or more targeted spin systems from one or more molecules. This method can endow the conventional nuclear magnetic resonance (NMR), magnetic resonance image (MRI) and magnetic resonance spectrum (MRS) with the multiple-targeting signal selectivity to selectively probe several targeted molecules and/or chemical groups simultaneously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmr.2022.107188 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!