An H2R-dependent medial septum histaminergic circuit mediates feeding behavior.

Curr Biol

Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road, Hangzhou 310053, China; Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road, Hangzhou 310009, Zhejiang, China. Electronic address:

Published: May 2022

Novel targets for treating feeding-related diseases are of great importance, and histamine has long been considered an anorexigenic agent. However, understanding its functions in feeding in a circuit-specific way is still limited. Here, we report a medial septum (MS)-projecting histaminergic circuit mediating feeding behavior. This MS-projecting histaminergic circuit is functionally inhibited during food consumption, and bidirectionally modulates feeding behavior via downstream H2, but not H1, receptors on MS glutamatergic neurons. Further, we observed a pathological decrease of histamine 2 receptors (H2Rs) expression in MS glutamatergic neurons in diet-induced obesity (DIO) mice. Genetically, down-regulation of H2Rs expression in MS glutamatergic neurons accelerates body-weight gain. Importantly, chronic activation of H2Rs in MS glutamatergic neurons (with its clinical agonist amthamine) significantly slowed down the body-weight gain in DIO mice, providing a possible clinical utility to treat obesity. Together, our results demonstrate that this MS-projecting histaminergic circuit is critically involved in feeding, and H2Rs in MS glutamatergic neurons is a promising target for treating body-weight problems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2022.03.010DOI Listing

Publication Analysis

Top Keywords

glutamatergic neurons
20
histaminergic circuit
16
feeding behavior
12
ms-projecting histaminergic
12
medial septum
8
h2rs expression
8
expression glutamatergic
8
dio mice
8
body-weight gain
8
h2rs glutamatergic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!