Objectives: Mitochondrial dysfunction has long been associated with the pathogenesis of lung cancer (LC). Mitochondrial DNA (mtDNA) haplogroups have been reported to modify the risk of LC in a few different populations; however, no study has been done among the Indians. Here, we explore the relationship between mtDNA haplogroups and LC in a representative eastern Indian sample set.

Methods: Different combinations of six mtDNA SNPs, which define the major Asian mtDNA haplogroups M and N, and their sub-haplogroups D, G, M7, R, and F were genotyped via polymerase chain reaction (PCR) - restriction fragment length polymorphism (RFLP) - sequencing approach in 94 smoker LC patients and 100 healthy smoker controls from an eastern Indian cohort.

Results: The distribution of 7 mtDNA haplogroups did not show any significant differences between patients and controls (p<0.05). We did not find sub-haplogroup M7 in our study population.

Conclusions: Our study is the first to indicate that the major Asian mtDNA haplogroups have no significant (p0.05) association with LC in East Indian population.

Download full-text PDF

Source
http://dx.doi.org/10.1515/jbcpp-2021-0352DOI Listing

Publication Analysis

Top Keywords

mtdna haplogroups
16
mitochondrial dna
8
lung cancer
8
eastern indian
8
haplogroups
5
mtdna
5
association common
4
common asian
4
asian mitochondrial
4
dna haplogroups
4

Similar Publications

Background: Several studies evaluated peripheral and cerebrospinal fluid (CSF) mtDNA as a putative biomarker in neurodegenerative diseases, often yielding inconsistent findings. We systematically reviewed the current evidence assessing blood and CSF mtDNA levels and variant burden in Parkinson's disease (PD), Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Multiple sclerosis (MS) was also included as a paradigm of chronic neuroinflammation-driven neurodegeneration.

View Article and Find Full Text PDF

The interplay between mitochondrial DNA genotypes, female infertility, ovarian response, and mutagenesis in oocytes.

Hum Reprod Open

December 2024

Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development , Laarbeeklaan 103, 1090 Brussels, Belgium.

Study Question: Is there an association between different mitochondrial DNA (mtDNA) genotypes and female infertility or ovarian response, and is the appearance of variants in the oocytes favored by medically assisted reproduction (MAR) techniques?

Summary Answer: Ovarian response was negatively associated with global non-synonymous protein-coding homoplasmic variants but positively associated with haplogroup K; the number of oocytes retrieved in a cycle correlates with the number of heteroplasmic variants in the oocytes, principally with variants located in the hypervariable (HV) region and rRNA loci, as well as non-synonymous protein-coding variants.

What Is Known Already: Several genes have been shown to be positively associated with infertility, and there is growing concern that MAR may facilitate the transmission of these harmful variants to offspring, thereby passing on infertility. The potential role of mtDNA variants in these two perspectives remains poorly understood.

View Article and Find Full Text PDF

The frequency of mitochondrial DNA haplogroups (mtDNA-HG) in humans is known to be shaped by migration and repopulation. Mounting evidence indicates that mtDNA-HG are not phenotypically neutral, and selection may contribute to its distribution. Haplogroup H, the most abundant in Europe, improved survival in sepsis.

View Article and Find Full Text PDF

Objective: In this study, we examined the genetic, medical, and molecular traits of two Han Chinese families with the tRNA G5783A mutation to investigate the relationship between mitochondrial DNA (mtDNA) mutations and major depressive disorder (MDD).

Methods: Clinical data and comprehensive mitochondrial genomes were collected from the two families. Variants were assessed for evolutionary conservation, allelic frequencies, and their structural and functional impacts.

View Article and Find Full Text PDF
Article Synopsis
  • Southern Africa has a long history of human habitation, with diverse immigration affecting the original KhoeSan populations over thousands of years, leading to their decline or admixture, primarily involving KhoeSan women.
  • The study analyzed mitochondrial DNA from 247 South African individuals focused on groups with historical ties to KhoeSan populations to evaluate genetic diversity and connectivity among these groups.
  • Results showed 142 distinct haplotypes, predominantly haplogroup L0, especially within admixed populations, indicating significant population structure and limitations in using mtDNA analysis for forensic purposes due to observed regional variations and matrilocal patterns.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!