3D printing represents a democratization of manufacturing processes, and inexpensive 3D printed parts for cell culture have been tested as replacements for single-use plastics currently unavailable due to worldwide supply chain issues. In addition, such distributed manufacturing of cell culture laboratory materials helps remote areas and developing countries with limited resources. HEK293 cells were used to test printed shake flasks for cell culture applications and their ease of manufacture. Recorded growth curves showed that renewable biodegradable poly(lactic acid) (PLA) thermoplastic is an excellent and economical replacement for single-use plastic shake flasks, which have shipment lead times during pandemic situations or other supply chain disruptions of over 6 months. With a price of 0.60 € in materials, and printing machines with prices lower than one box of single-use pre-sterilized plastic shake flasks (<350€), the use of PLA is very affordable. Low-cost photopolymerization resins were also tested, but the inherent cytotoxicity of these materials prevented cell growth. This was also true for plant-based resins marketed as having low volatile organic compounds (VOC). Treatment of parts to reduce VOC content was partially successful, but not sufficient to sustain prolonged cell growth. A high-cost medical device IIa-class material showed no improved cell growth. Nevertheless, with PLA a low-cost printing material was identified and the use as cell culture compatible material was demonstrated, providing low-cost supply chain independence. In the future, the printing of pilot-scale bioreactors with PLA as a green sustainable material at the point of its use will be possible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbt.2022.03.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!