The search for effective and less toxic drugs for the treatment of Cutaneous Leishmaniasis (CL) is desirable due to the emergence of resistant parasites. The present study shows the preparation, characterization and in vitro antileishmanial activity of green-based silver nanoparticles (AgNPs) with Cashew Nutshell Liquid (CNSL, main constituents: anacardic acid (AA) and cardol (CD). The synthesis of silver nanoparticles was achieved by reduction with sodium borohydride in the presence of anacardic acid or cardol under microwave irradiation (400 W, 60 °C, 5 min) resulting in AgAA and AgCD. In vitro assay showed opposite effects for AgAA and AgCD. While AgAA is highly toxic to macrophages (CC = 6.910 µg mL) and almost non-toxic for L.braziliensis (IC = 86.61 µg mL), AgCD results very selective toward killing the parasite (CC = 195.0 µg mL, IC = 11.54 µg mL). AA's higher polarity and conical shape easily promote cell lysis by increasing cell permeability, while CD has a protective effect: for that reason, AA and AgAA were not further used for tests. CD (EC = 2.906 µg mL) had higher ability to kill intracellular amastigotes than AgCD (EC = 16.00 µg mL), however, less intact cells were seen on isolated CD tests. In addition, considering that NO is one of the critical molecular species for the intracellular control of Leishmania, we used Griess colorimetric test to analyze the effect of treatment with AgCD and CD. Overall, the in vitro antileishmanial tests indicate that AgCD should be further explored as a promising non-toxic treatment for CL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2022.121698 | DOI Listing |
Microorganisms
December 2024
Department of Chemistry, Illinois State University, Normal, IL 61790, USA.
Sulfonamide drugs were the original class of antibiotics, demonstrating the antibacterial potential of dithiocarbazate and thiosemicarbazone Schiff base derivatives of syringaldehyde and 4-hydroxy-3,5-dimethylbenzaldehyde. We synthesized unique Schiff bases via the condensation of the aldehydes with hydrazine derivatives, which allows for the easy synthesis of several related compounds. These Schiff base derivatives were tested for antileishmanial properties against the parasitic protozoan .
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil.
Leishmaniasis, caused by protozoa and transmitted by vectors, presents varied clinical manifestations based on parasite species and host immunity. The lack of effective vaccines or treatments has prompted research into new therapies, including thiourea derivatives, which have demonstrated antiprotozoal activities. We synthesized two series of ,'-disubstituted thiourea derivatives through the reaction of isothiocyanates with amines.
View Article and Find Full Text PDFACS Omega
December 2024
Laboratory of Cheminformatics, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia 74605-170, Brazil.
In Silico Pharmacol
December 2024
Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019 India.
Visceral Leishmaniasis, caused by is the second most deadly parasitic disease, causing over 65,000 deaths annually. Synthetic drugs available in the market, to combat this disease, have numerous side effects. In this backdrop, we aim to find safer antileishmanial alternatives with minimal side effects from mushrooms, which harbour various secondary metabolites with promising efficacy.
View Article and Find Full Text PDFBioorg Chem
December 2024
Universidad de Buenos Aires, CONICET, Cátedra de Química Orgánica II, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Junín 956, 1113 Buenos Aires, Argentina. Electronic address:
This work describes the synthesis and biological evaluation of hitherto unknown N-arylspermidine derivatives 3. Compounds 3 were efficiently prepared from cyclic amidines through a novel synthetic approach comprising alkylation with ω-halonitriles followed by reduction. The cyclic N-arylamidine directs the alkylation to the unsubstituted nitrogen and also provides the N-benzyl group present in the triamine after simultaneous reduction of the resulting quaternary salt 2 and the cyano group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!