The construction of shale gas facilities disturbs large areas of land and affects soil quality and function. In this study, we investigated the properties (including physical, chemical, and microbiological indicators) of soil at three different distances from a shale gas development site (<30 m, 30-50 m, and 50-100 m) in a karst area in 2017 and 2020. Our results showed that the soil water content; available carbon, nitrogen, and phosphorus concentrations; total nitrogen and total phosphorus concentrations; microbial biomass, and enzyme activities increased (P < 0.05) as the distance from the well pad increased, and the total carbon content, pH, electrical conductivity, and some ions (magnesium, sodium, and potassium) decreased with distance from the well pad (P < 0.05). The differences in the soil properties were most noticeable in 2017. The increases in the available nutrients were greater than in the total nutrients. The overall soil quality after the shale gas well pad construction was limited by the microbial biomass and sodium contents. The soil properties recovered most quickly at 30-50 m from the well pad, because of local farmland management practices that improved the soil properties and microbial biomass, and reduced the microbial stress. Therefore, we recommend planting sodium-tolerant crops on the land closest to the well pads, to facilitate restoration of the soil that was disturbed during the construction period.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.154730 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada.
Limiting climate change to targets enshrined in the Paris Agreement will require both deep decarbonization of the energy system and the deployment of carbon dioxide removal at potentially large scale (gigatons of annual removal). Nations are pursuing direct air capture to compensate for inertia in the expansion of low-carbon energy systems, decarbonize hard-to-abate sectors, and address legacy emissions. Global assessments of this technology have failed to integrate factors that affect net capture and removal cost, including ambient conditions like temperature and humidity, as well as emission factors of electricity and natural gas systems.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
The Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Xingangzhong Road 466, Guangzhou, 518037, P. R. China.
Photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising treatment options, showcasing immense potential in addressing both oncologic and nononcologic diseases. Single-component organic phototherapeutic agents (SCOPAs) offer advantages compared to inorganic or multicomponent nanomedicine, including better biosafety, lower toxicity, simpler synthesis, and enhanced reproducibility. Nonetheless, how to further improve the therapeutic effectiveness of SCOPAs remains a challenging research area.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Chemical Safety, College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
With the growing severity of air pollution, monitoring harmful gases that pose risks to both human health and the ecological environment has become a focal point of research. Titanium dioxide (TiO) demonstrates significant potential for application in SO gas detection. However, the performance of pure TiO is limited.
View Article and Find Full Text PDFHeliyon
January 2025
Addis Ababa University, College of Developmental Studies, Center for Food Security Studies, Ethiopia.
The progress of Ethiopia's agriculture is constrained by climate change leaving smallholder farmers vulnerable. As a panacea to the challenge, development institutions, governments, and research organizations are progressively promoting climate-smart agriculture (CSA) to maximize productivity, increase the resilience of livelihoods and farming systems (adaptation), and minimize or stop greenhouse gas emissions to the atmosphere (mitigation). This review synthesized knowledge on the prospects of CSA and climate change in addressing the adverse effects of climate change and variability by revising 99 peer-reviewed journal articles.
View Article and Find Full Text PDFHeliyon
January 2025
African Centre of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, PMB 1526, Imo State, Nigeria.
The management of wastewater and agricultural wastes has been limited by the separate treatment processes, which exacerbate pollution and contribute to climate change through greenhouse gas emissions. Given the energy demands and financial burdens of traditional treatment facilities, there is a pressing need for technologies that can concurrently treat solid waste and generate energy. This study aimed to evaluate the feasibility of producing bioelectricity and biohydrogen through the microbial treatment of blackwater and agricultural waste using a dual-chamber Microbial Fuel Cell (MFC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!