The Na-pumping NADH-ubiquinone (UQ) oxidoreductase (Na-NQR) is an essential bacterial respiratory enzyme that generates a Na gradient across the cell membrane. However, the mechanism that couples the redox reactions to Na translocation remains unknown. To address this, we examined the relation between reduction of UQ and Na translocation using a series of synthetic UQs with Vibrio cholerae Na-NQR reconstituted into liposomes. UQ that has no side chain and UQ and UQ, which have methyl and ethyl side chains, respectively, were catalytically reduced by Na-NQR, but their reduction generated no membrane potential, indicating that the overall electron transfer and Na translocation are not coupled. While these UQs were partly reduced by electron leak from the cofactor(s) located upstream of riboflavin, this complete loss of Na translocation cannot be explained by the electron leak. Lengthening the UQ side chain to n-propyl (CH) or longer significantly restored Na translocation. It has been considered that Na translocation is completed when riboflavin, a terminal redox cofactor residing within the membrane, is reduced. In this view, the role of UQ is simply to accept electrons from the reduced riboflavin to regenerate the stable neutral riboflavin radical and reset the catalytic cycle. However, the present study revealed that the final UQ reduction via reduced riboflavin makes an important contribution to Na translocation through a critical role of its side chain. Based on the results, we discuss the critical role of the UQ side chain in Na translocation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbabio.2022.148547 | DOI Listing |
Bioconjug Chem
January 2025
Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
Hydrophobic payloads incorporated into antibody-drug conjugates (ADCs) typically are superior to hydrophilic ones in tumor penetration and "bystander killing" upon release from ADCs. However, they are prone to aggregation and accelerated plasma clearance, which lead to reduced efficacies and increased toxicities of ADC molecules. Shielding the hydrophobicity of payloads by incorporating polyethylene glycol (PEG) elements or sugar groups into the ADC linkers has emerged as a viable alternative to directly adopting hydrophilic payloads.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via G. Amendola 165/a, 70126 Bari, Italy.
Coenzyme Q (CoQ) and closely related compounds with varying isoprenoid tail lengths (CoQ, = 6-9) are biochemical cofactors involved in many physiological processes, playing important roles in cellular respiration and energy production. Liquid chromatography (LC) coupled with single or tandem mass spectrometry (MS) using electrospray (ESI) or atmospheric pressure chemical ionization (APCI) is considered the gold standard for the identification and quantification of CoQ in food and biological samples. However, the characteristic fragmentation exhibited by the CoQ radical anion ([M], / 862.
View Article and Find Full Text PDFThis paper explores optimization strategies for polymeric materials in organic solar cells (OSCs) with the focus on varying alkyl side chain, addition of fluorine atom, and thiophenated derivatives onto polymer. As such, it outlines the significance of renewable energy sources and the potential of photovoltaic technologies, particularly organic photovoltaics (OPVs). Objectives include factors affecting power conversion efficiency (PCE), open-circuit voltage (Voc), aggregation tendencies, and optoelectronic properties in OPVs.
View Article and Find Full Text PDFInt J Cancer
January 2025
Department of Neurosurgery, LMU University Hospital, Munich, Germany.
Neurologic immune-related adverse events (nirAEs) represent rare, yet severe side effects associated with immune checkpoint inhibitor (ICI) therapy. Given the absence of established diagnostic biomarkers for nirAEs, we aimed to evaluate the diagnostic utility of serum Neurofilament Light Chain (NfL) and Glial Fibrillary Acidic Protein (GFAP). Fifty-three patients were included at three comprehensive cancer centers, of these 20 patients with manifest nirAEs and 11 patients with irHypophysitis.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
Unstable anode/electrolyte interfaces have significantly hindered the development of lithium (Li) metal batteries under high rates and large capacities. In this study, a versatile reactive layer based on sulfur-selenium crosslinked polyacrylonitrile brushes has been developed by a combined strategy of polymer topology design and chemical crosslinking. The sulfur-selenium crosslinked polyacrylonitrile side-chains can react with Li to generate passivated LiS-LiSe-containing solid electrolyte interphase while 3D lithiophilic porous nanonetworks enable Li penetration, contributing to achieving rapid and uniform Li ion flux and a dendrite-free anode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!