Inventory of biodegradation data of ionic liquids.

Chemosphere

Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany; Research and Education Hub, International Sustainable Chemistry Collaborative Centre (ISC(3)), Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany. Electronic address:

Published: July 2022

Ionic liquids (ILs) are increasingly of interest for environmentally open applications. Therefore, completely mineralising ILs are highly desirable. We reviewed the current state of knowledge on ILs' environmental biodegradability and identified research needs. Literature data were evaluated as for applied standard methods (e.g. OECD, ISO, APHA) for biodegradation of ILs in order to get an overview on the validity of the test results received and ILs' biodegradability. 109 studies were evaluated. The ILs were categorised based on the cation's core structure. The biodegradation data was classified according to a traffic light system (red: 0-19% degradation, amber: 20-59% degradation, green: ≥ 60% degradation). Not all studies could be assessed for compliance with the test guidelines due to missing test parameters. Moreover, no study discussed all validation criteria as defined by the test guidelines. Consequently, the reliability and quality of the existing biodegradation data is restrained. With regard to the different cations classified for ≥ 60% biodegradability, phosphonium ILs are the least biodegradable, followed by imidazolium ones. The most ILs that were biodegradable are cholinium ILs. The results indicate the need for more and qualitatively better testing according to standard methods including application and reporting of all validation criteria in order to get reliable data that enables the comparison of the test data and a comprehensive understanding of ILs' biodegradability. Moreover, reliable data allows the selection of sufficiently environmentally biodegradable ILs if an introduction into the environment during use cannot be excluded.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.134385DOI Listing

Publication Analysis

Top Keywords

biodegradation data
12
ionic liquids
8
ils
8
standard methods
8
ils' biodegradability
8
≥ 60%
8
test guidelines
8
validation criteria
8
ils biodegradable
8
reliable data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!