Influence of sonocrystallization on lipid crystals multicomponent oleogels structuration and physical properties.

Food Res Int

Science des Aliments et Formulation, Gembloux Agro-Bio Tech, ULiège, 5030 Gembloux, Belgium. Electronic address:

Published: April 2022

The use of multicomponent oleogels combined with a physical process such as high-intensity ultrasound (HIU) has become an interesting alternative to overcome nutritional and technological issues in fat-based foods. This is because the combination can add technological properties without changing the total amount of gelators, improving sensory acceptance and clean label claim. In this context, the study aims to evaluate the structuration power and physical properties of oleogels formed by monoglycerides (MG), fully hydrogenated rapessed oil (FHRO), and lecithin (LE) in rapeseed oil, with and without HIU. All samples were analyzed according to their microstructure, melting behavior, rheology, texture, polymorphism, and oil binding capacity. In mono-structured oleogels, only MG was able to form gels that did not flow. Three synergic combinations that produced 99% oil binding capacity oleogels were found: MG: FHRO, FHRO:LE, and MG:FHRO:LE. These combinations showed improved physical properties like hardness, elastic modulus, and oil loss when sonicated, which was attributed to the induced secondary crystallization of the FHRO promoted by HIU.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2022.110997DOI Listing

Publication Analysis

Top Keywords

physical properties
12
multicomponent oleogels
8
oil binding
8
binding capacity
8
oleogels
5
oil
5
influence sonocrystallization
4
sonocrystallization lipid
4
lipid crystals
4
crystals multicomponent
4

Similar Publications

Hydroxyapatite Chitosan Gradient Pore Scaffold Activates Oxidative Phosphorylation Pathway to Induce Bone Formation.

Front Biosci (Landmark Ed)

January 2025

Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory of Stomatology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, 350005 Fuzhou, Fujian, China.

Background: In this study, we prepared a porous gradient scaffold with hydroxyapatite microtubules (HAMT) and chitosan (CHS) and investigated osteogenesis induced by these scaffolds.

Methods: The arrangement of wax balls in the mold can control the size and distribution of the pores of the scaffold, and form an interconnected gradient pore structure. The scaffolds were systematically evaluated and for biocompatibility, biological activity, and regulatory mechanisms.

View Article and Find Full Text PDF

Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.

View Article and Find Full Text PDF

The burdens of cardiovascular (CV) diseases and cardiotoxic side effects of cancer treatment in oncology patients are increasing in parallel. The European Society of Cardiology (ESC) 2022 Cardio-Oncology guidelines recommend the use of standardized risk stratification tools to determine the risk of cardiotoxicity associated with different anticancer treatment modalities and the severity of their complications. The use of the Heart Failure Association-International Cardio-Oncology Society (HFA-ICOS) is essential for assessing risk prior to starting cancer treatment, and validation of these methods has been performed in patients receiving anthracyclines, human epidermal receptor 2 (HER2)-targeted therapies and breakpoint cluster region-abelson oncogene locus (BCR-ABL) inhibitors.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome (PRRS) is an endemic disease affecting the swine industry. The disease is caused by the PRRS virus (PRRSV). Despite extensive biosecurity and control measures, the persistence and seasonality of the virus have raised questions about the virus's environmental dynamics during the fall season when the yearly epidemic onset begins and when crop harvesting and manure incorporation into the field occur.

View Article and Find Full Text PDF

Since the discovery of the Australia antigen, now known as the hepatitis B surface antigen (HBsAg), significant research has been conducted to elucidate its physical, chemical, structural, and functional properties. Subviral particles (SVPs) containing HBsAg are highly immunogenic, non-infectious entities that have not only revolutionized vaccine development but also provided critical insights into HBV immune evasion and viral assembly. Recent advances in cryo-electron microscopy (cryo-EM) have uncovered the heterogeneity and dynamic nature of spherical HBV SVPs, emphasizing the essential role of lipid-protein interactions in maintaining particle stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!