A novel nanocomposite comprised of cellulose nanocrystals (CNCs) and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) oxidized cellulose nanofibers (TOCNFs) was prepared through solution casting to evaluate potential improvements of the mechanical performance compared to individual reinforcements alone. Such materials can be implemented as mechanical reinforcements in polymer composites, especially when less weight is desired. Dissipative particle dynamics (DPD) simulations, in combination with polarized light microscopy and atomic force microscopy, were analyzed to evaluate the morphology of these combined cellulose nanomaterial (CNM) films. Our results indicate that TOCNFs provide enhanced translational mobility to CNCs which become incorporated near the crystalline domains of TOCNFs. This mobility enables CNCs to increase the rigidity of the network without sacrificing elongation and toughness. The combination of these materials provides improved ultimate tensile strength and elongation without sacrificing the Young's modulus. Therefore, a combination of these materials can be used to develop nanocomposites with enhanced mechanical properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2022.119283 | DOI Listing |
Br J Radiol
January 2025
Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta Western Road, Xi'an, Shannxi, 710061.
Purpose: To explore the effect of different reconstruction algorithms (ASIR-V and DLIR) on image quality and emphysema quantification in chronic obstructive pulmonary disease (COPD) patients under ultra-low-dose scanning conditions.
Materials And Methods: This prospective study with patient consent included 62 COPD patients. Patients were examined by pulmonary function test (PFT), standard-dose CT (SDCT) and ultra-low-dose CT (ULDCT).
Clin Oral Investig
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
Objectives: To develop a platform including a deep convolutional neural network (DCNN) for automatic segmentation of the maxillary sinus (MS) and adjacent structures, and automatic algorithms for measuring 3-dimensional (3D) clinical parameters.
Materials And Methods: 175 CBCTs containing 242 MS were used as the training, validating and testing datasets at the ratio of 7:1:2. The datasets contained healthy MS and MS with mild (2-4 mm), moderate (4-10 mm) and severe (10- mm) mucosal thickening.
Abdom Radiol (NY)
January 2025
Departmet of Urology, Medical Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, Kaunas, 44307, Lithuania.
Objectives: This study aimed to investigate the accuracy of multiparametric magnetic resonance imaging (mpMRI), genetic urinary test (GUT), and prostate cancer prevention trial risk calculator version 2.0 (PCPTRC2) for the clinically significant prostate cancer (csPCa) diagnostic in biopsy-naïve patients.
Materials And Methods: In a single center study between 2021 and 2024 participants underwent prostate mpMRI, GUT, and ultrasound (US) guided biopsy.
Eur J Nucl Med Mol Imaging
January 2025
Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.
Purpose: This study aimed to identify if a subset of men can safely avoid or delay prostate biopsy based on negative results of prostate-specific membrane antigen positron emission tomography (PSMA-PET).
Materials And Methods: Among 341 consecutive cases in a prospective biopsy cohort (NCT05073653), 111 treatment-naïve men with negative PSMA-PET (PRIMARY-score 1/2) were included. All participants underwent PSMA-PET and histopathological examinations.
J Phys Chem Lett
January 2025
Institute of Bioproducts and Paper Technology, Graz University of Technologyy, Inffeldgasse 23, 8010 Graz, Austria.
The mechanical properties of metal-organic frameworks (MOFs) are of high fundamental and practical relevance. A particularly intriguing technique for determining anisotropic elastic tensors is Brillouin scattering, which so far has rarely been used for highly complex materials like MOFs. In the present contribution, we apply this technique to study a newly synthesized MOF-type material, referred to as GUT2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!