The crustacean model Parhyale hawaiensis.

Curr Top Dev Biol

Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France; Centre National de la Recherche Scientifique (CNRS), France. Electronic address:

Published: April 2022

Arthropods are the most abundant and diverse animals on earth. Among them, pancrustaceans are an ancient and morphologically diverse group, comprising a wide range of aquatic and semi-aquatic crustaceans as well as the insects, which emerged from crustacean ancestors to colonize most terrestrial habitats. Within insects, Drosophila stands out as one of the most powerful animal models, making major contributions to our understanding of development, physiology and behavior. Given these attributes, crustaceans provide a fertile ground for exploring biological diversity through comparative studies. However, beyond insects, few crustaceans are developed sufficiently as experimental models to enable such studies. The marine amphipod Parhyale hawaiensis is currently the best established crustacean system, offering year-round accessibility to developmental stages, transgenic tools, genomic resources, and established genetics and imaging approaches. The Parhyale research community is small but diverse, investigating the evolution of development, regeneration, aspects of sensory biology, chronobiology, bioprocessing and ecotoxicology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.ctdb.2022.02.001DOI Listing

Publication Analysis

Top Keywords

parhyale hawaiensis
8
crustacean model
4
model parhyale
4
hawaiensis arthropods
4
arthropods abundant
4
abundant diverse
4
diverse animals
4
animals earth
4
earth pancrustaceans
4
pancrustaceans ancient
4

Similar Publications

Article Synopsis
  • Modern live imaging techniques, such as light-sheet fluorescence microscopy (LSFM), allow for detailed lineage tracing of cells, revealing their development and behavior in real time.
  • LSFM enables imaging of whole organisms over extended periods while minimizing damage to the specimens, significantly enhancing our understanding of cellular dynamics.
  • The chapter outlines how to prepare LSFM datasets and introduces three software platforms (MaMuT, Mastodon, and TrackMate) for tracking cell lineages in a crustacean model, Parhyale hawaiensis, through various tracking methods.
View Article and Find Full Text PDF

Natural indigo toxicity for aquatic and terrestrial organisms.

Ecotoxicol Environ Saf

December 2024

Faculdade de Tecnologia, Universidade Estadual de Campinas, UNICAMP, Limeira, SP, Brazil.

Indigo is a widely used colorant available from natural and synthetic origin. It is practically insoluble in water. Indigo can reach aquatic sediments through wastewater discharges from dyeing processes, terrestrial compartments from the treatment sludges used as biosolids and dyed textiles disposed in landfills.

View Article and Find Full Text PDF

The ability to anticipate tides is critical for a wide range of marine organisms, but this task is complicated by the diversity of tidal patterns on Earth. Previous findings suggest that organisms whose geographic range spans multiple types of tidal cycles can produce distinct patterns of rhythmic behavior that correspond to the tidal cycles they experience. How this behavioral plasticity is achieved, however, is unclear.

View Article and Find Full Text PDF

Developing behavioural ecotoxicology assessment methods in the tropical marine amphipod, Parhyale hawaiensis: A study with benzo[a]pyrene (BaP).

Mar Pollut Bull

December 2024

Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom; Department of Forestry Wildlife and Fisheries, The University of Tennessee, Knoxville, TN, USA. Electronic address:

Toxicant-induced behavioural changes provide important insights into environmental toxicity, particularly in vulnerable tropical marine habitats. However, ecotoxicological knowledge of organisms in these environments is insufficient. We aimed to develop innovative and cost-effective ecotoxicology methods using Parhyale hawaiensis as a tropical model organism.

View Article and Find Full Text PDF

Designing and applying a methodology to assess sperm cell viability and DNA damage in a model amphipod.

Sci Total Environ

November 2024

Faculdade de Tecnologia, Universidade Estadual de Campinas, Brazil. Electronic address:

Sperm quality is defined as the sperm cell ability to successfully fertilize eggs and allow normal embryo development⁠. Few studies explore sperm quality using aquatic invertebrates. Parhyale hawaiensis is a marine amphipod with a circumtropical distribution and considered a model for evolution, development, and ecotoxicological studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!