A comparison of transcriptome analysis methods with reference genome.

BMC Genomics

Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.

Published: March 2022

Background: The application of RNA-seq technology has become more extensive and the number of analysis procedures available has increased over the past years. Selecting an appropriate workflow has become an important issue for researchers in the field.

Methods: In our study, six popular analytical procedures/pipeline were compared using four RNA-seq datasets from mouse, human, rat, and macaque, respectively. The gene expression value, fold change of gene expression, and statistical significance were evaluated to compare the similarities and differences among the six procedures. qRT-PCR was performed to validate the differentially expressed genes (DEGs) from all six procedures.

Results: Cufflinks-Cuffdiff demands the highest computing resources and Kallisto-Sleuth demands the least. Gene expression values, fold change, p and q values of differential expression (DE) analysis are highly correlated among procedures using HTseq for quantification. For genes with medium expression abundance, the expression values determined using the different procedures were similar. Major differences in expression values come from genes with particularly high or low expression levels. HISAT2-StringTie-Ballgown is more sensitive to genes with low expression levels, while Kallisto-Sleuth may only be useful to evaluate genes with medium to high abundance. When the same thresholds for fold change and p value are chosen in DE analysis, StringTie-Ballgown produce the least number of DEGs, while HTseq-DESeq2, -edgeR or -limma generally produces more DEGs. The performance of Cufflinks-Cuffdiff and Kallisto-Sleuth varies in different datasets. For DEGs with medium expression levels, the biological verification rates were similar among all procedures.

Conclusion: Results are highly correlated among RNA-seq analysis procedures using HTseq for quantification. Difference in gene expression values mainly come from genes with particularly high or low expression levels. Moreover, biological validation rates of DEGs from all six procedures were similar for genes with medium expression levels. Investigators can choose analytical procedures according to their available computer resources, or whether genes of high or low expression levels are of interest. If computer resources are abundant, one can utilize multiple procedures to obtain the intersection of results to get the most reliable DEGs, or to obtain a combination of results to get a more comprehensive DE profile for transcriptomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8957167PMC
http://dx.doi.org/10.1186/s12864-022-08465-0DOI Listing

Publication Analysis

Top Keywords

expression levels
24
gene expression
16
expression values
16
low expression
16
expression
14
fold change
12
genes medium
12
medium expression
12
genes high
12
high low
12

Similar Publications

The nanoscale organization of the Nipah virus fusion protein informs new membrane fusion mechanisms.

Elife

January 2025

Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada.

Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental condition affecting a substantial number of children globally, characterized by diverse aetiologies, including genetic and environmental factors. Emerging research suggests that neurovascular dysregulation during development could significantly contribute to autism. This review synthesizes the potential role of vascular abnormalities in the pathogenesis of ASD and explores insights from studies on valproic acid (VPA) exposure during neural tube development.

View Article and Find Full Text PDF

We aimed to explore the role of Amino acid metabolism (AAM) and identify biomarkers for prognosis management and treatment of lung adenocarcinoma. Differentially expressed genes (DEGs) associated with AAM in lung adenocarcinoma were selected from public databases. Samples were clustered into varying subtypes using ConsensusClusterPlus based on gene levels.

View Article and Find Full Text PDF

Obesity can change the immune microenvironment of adipose tissue and induce inflammation. This study is dedicated to exploring the internal mechanism by which different intensities of exercise reprogram the immune microenvironment of epididymal adipose tissue in nutritionally obese mice. C57BL/6J male obese mouse models were constructed by high-fat diet, which were respectively obese control group (OC), moderate intensity continuous exercise group (HF-M), high intensity continuous exercise group (HF-H) and high intensity intermittent exercise group (HF-T).

View Article and Find Full Text PDF

mTOR Signaling Regulates Multiple Metabolic Pathways in Human Lung Fibroblasts After TGF-β and in Pulmonary Fibrosis.

Am J Physiol Lung Cell Mol Physiol

January 2025

Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637.

Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that TGF-β-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote metabolic reprogramming in lung fibroblasts characterized by upregulation of the de synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!