Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A constantly elevated level of low-density lipoprotein cholesterol (LDL-C) is mainly associated with the development of atherosclerosis. The use of statins as a treatment for reducing plasma LDL-C levels has led, in some cases, to adverse side effects, including a decrease in hepatic LDL receptor (LDLR), the receptor responsible for the uptake of circulating LDL-C. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme responsible for directing the LDLR-LDL-C complex to lysosomal degradation upon transport into cells, preventing the recycling of LDLR to the cell surface. Therefore, PCSK9 may offer a new target for reducing the levels of plasma LDL-C. In this study, we investigated the mechanisms of action of a selected fraction of on PCSK9 gene expression, as well as the effect of the fraction on the level of LDLR protein and the uptake of LDL-C. Using real-time PCR, it was shown that the selected fraction reduced the gene expression of PCSK9 in human liver HepG2 cells. Immunocytochemistry analysis demonstrated that the selected fraction increased the LDLR protein level and LDL-C uptake in HepG2 cells. Promoter mutational and gene expression analyses revealed that PPRE, a binding site for peroxisome proliferator-activated receptor (PPAR), was responsible for mediating the inhibitory effect of the selected fraction on PCSK9 mRNA. In addition, MAP kinase and PKC components of the signal transduction pathway were activated, inducing the action of the selected fraction in decreasing PCSK9 gene expression. These findings suggest that the selected fraction shows good potential for reducing circulating LDL-C and, thus, may be a good therapeutic intervention to prevent the progression of atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8955981 | PMC |
http://dx.doi.org/10.3390/ph15030269 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!