AI Article Synopsis

  • Previous studies show that people who have had COVID-19 develop strong antibody responses after vaccination.
  • In a study of 21 vaccinated individuals, researchers compared antibody levels before and after immunization between those who had recovered from COVID-19 and those who had never been infected.
  • The findings revealed that while naïve individuals showed different antibody responses after two vaccine doses, recovered individuals did not see significant increases after the second dose, indicating that just one dose may be enough for those previously infected to generate protective antibody responses.

Article Abstract

Previous studies have indicated that antibody responses can be robustly induced after the vaccination in individuals previously infected by SARS-CoV-2. To evaluate anti-SARS-CoV-2 humoral responses in vaccinated individuals with or without a previous history of COVID-19, we compared levels of anti-SARS-CoV-2 antibodies in the sera from 21 vaccinees, including COVID-19-recovered or -naïve individuals in different times, before and after immunization with an inactivated COVID-19 vaccine. Anti-SARS-CoV-2-specific antibodies elicited after COVID-19 and/or immunization with an inactivated vaccine were measured by ELISA and Plaque Reduction Neutralizing assays. Antibody kinetics were consistently different between the two vaccine doses for naïve individuals, contrasting with the SARS-CoV-2-recovered subjects in which we observed no additional increase in antibody levels following the second dose. Sera from SARS-CoV2-naïve individuals had no detectable neutralizing activity against lineage B.1 SARS-CoV-2 or Gamma variant five months after the second vaccine dose. Contrarily, SARS-CoV-2-recovered subjects retained considerable neutralizing activity against both viruses. We conclude that a single inactivated SARS-CoV-2 vaccine dose may be sufficient to induce protective antibody responses in individuals with previous history of SARS-CoV-2 infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8955604PMC
http://dx.doi.org/10.3390/v14030510DOI Listing

Publication Analysis

Top Keywords

humoral responses
8
inactivated covid-19
8
covid-19 vaccine
8
antibody responses
8
individuals previous
8
previous history
8
immunization inactivated
8
sars-cov-2-recovered subjects
8
neutralizing activity
8
vaccine dose
8

Similar Publications

The coronavirus disease 2019 (COVID-19) is a fatal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, several vaccines have been developed to combat the spread of this virus. Mucosal vaccines using food-grade bacteria, such as Lactobacillus spp.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) from can elicit immune responses, positioning them as promising acellular vaccine candidates. We characterized EVs from an avirulent cell wall mutant (Δ) and evaluated their protective potential against invasive candidiasis. EVs from the yeast (YEVs) and hyphal (HEVs) forms of the SC5314 wild-type strain were also tested, yielding high survival rates with SC5314 YEV (91%) and YEV immunization (64%).

View Article and Find Full Text PDF

Introduction: HLA matching is critical for successful kidney transplantation. This study aimed to investigate the impact of eplet mismatches and Predicted Indirectly Recognizable HLA Epitopes (PIRCHE-II) scores on the development of de novo donor-specific antibodies (dnDSA) and graft survival in a Tunisian cohort, characterized by a high prevalence of living donors and significant genetic diversity in HLA profiles.

Methods: This retrospective study included 112 adult kidney transplant recipients who underwent transplantation between 2012 and 2018.

View Article and Find Full Text PDF

β-Glucan induced plasma B cells differentiation to enhance antitumor immune responses by Dectin-1.

BMC Immunol

January 2025

Laboratory of Oncology, Medical Research Center, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, China.

Background: B lymphocytes, essential in cellular immunity as antigen-presenting cells and in humoral immunity as major effector cells, play a crucial role in the antitumor response. Our previous work has shown β-glucan enhanced immunoglobulins (Ig) secretion. But the specific mechanisms of B-cell activation with β-glucan are poorly understood.

View Article and Find Full Text PDF

Background: The antigen Na-GST-1, expressed by the hookworm Necator americanus, plays crucial biochemical roles in parasite survival. This study explores the development of mRNA vaccine candidates based on Na-GST-1, building on the success of recombinant Na-GST-1 (rNa-GST-1) protein, currently assessed as a subunit vaccine candidate, which has shown promise in preclinical and clinical studies.

Methodology/findings: By leveraging the flexible design of RNA vaccines and protein intracellular trafficking signal sequences, we developed three variants of Na-GST-1 as native (cytosolic), secretory, and plasma membrane-anchored (PM) antigens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!