Traditional rice landraces are treasures for novel genes to develop climate-resilient cultivars. Seed viability and germination determine rice productivity under moisture stress. The present study evaluated 100 rice genotypes, including 85 traditional landraces and 15 improved cultivars from various agro-ecological zones of Tamil Nadu, along with moisture-stress-susceptible (IR 64) and moisture-stress-tolerant (IR 64 Drt1) checks. The landraces were screened over a range of osmotic potentials, namely (-) 1.0 MPa, (-) 1.25 MPa and (-) 1.5 MPa, for a period of 5 days in PEG-induced moisture stress. Physio-morphological traits, such as rate of germination, root and shoot length, vigor index, R/S ratio and relative water content (RWC), were assessed during early moisture stress at the maximum OP of (-) 1.5 MPa. The seed macromolecules, phytohormones (giberellic acid, auxin (IAA), cytokinin and abscisic acid), osmolytes and enzymatic antioxidants (catalase and superoxide dismutase) varied significantly between moisture stress and control treatments. The genotype Kuliyadichan registered more IAA and giberellic acid (44% and 35%, respectively, over moisture-stress-tolerant check (IR 64 Drt1), whereas all the landraces showed an elevated catalase activity, thus indicating that the tolerant landraces effectively eliminate oxidative damages. High-performance liquid chromatography analysis showed a reduction in cytokinin and an increase in ABA level under induced moisture stress. Hence, the inherent moisture-stress tolerance of six traditional landraces, such as Kuliyadichan, Rajalakshmi, Sahbhagi Dhan, Nootripathu, Chandaikar and Mallikar, was associated with metabolic responses, such as activation of hydrolytic enzymes, hormonal crosstalk, ROS signaling and antioxidant enzymes (especially catalase), when compared to the susceptible check, IR 64. Hence, these traditional rice landraces can serve as potential donors for introgression or pyramiding moisture-stress-tolerance traits toward developing climate-resilient rice cultivars.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8955497PMC
http://dx.doi.org/10.3390/plants11060775DOI Listing

Publication Analysis

Top Keywords

moisture stress
24
traditional rice
12
enzymatic antioxidants
8
rice genotypes
8
rice landraces
8
traditional landraces
8
giberellic acid
8
landraces
7
moisture
6
stress
6

Similar Publications

High-pressure treatment was utilized in this study to produce high-quality, reduced-sodium pork gels with desirable texture and sensory properties, addressing the challenge of maintaining quality in low-sodium meat products to meet health-conscious consumer demands. High-pressure treatment applied within the range of 150-200 MPa significantly reduced cooking loss while maintaining moisture content and provided an ideal network structure for reduced-sodium pork gels. High-pressure treatment at up to 100-200 MPa, in combination with added sodium chloride and sodium polyphosphate, was evaluated for its effects on gel texture, with results indicating that high-pressure treatment significantly improved breaking stress (increased by 10.

View Article and Find Full Text PDF

Effect of Chemical Treatment on the Mechanical and Hygroscopic Properties of an Innovative Clay-Sand Composite Reinforced with Fibers.

Materials (Basel)

January 2025

Laboratoire d'Energétique et des Transferts Thermique et Massique (LETTM), Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire El-Manar, El Manar, Tunis 2092, Tunisia.

The viability of using fibers as reinforcement material for developing lightweight sustainable non-structural construction materials in compliance with the valorization of local by-products has been investigated in this work. This study aims to investigate the effect of the chemical treatment of fibers on the mechanical and hygric properties of bio-sourced clay-sand- fiber composite. This lightweight specimen has been produced from a mixture of 60% natural clay and 40% sand by mass, as a matrix, and reinforced with different amounts of Juncus fibers.

View Article and Find Full Text PDF

Grapevines are subjected to many physiological and environmental stresses that influence their vegetative and reproductive growth. Water stress, cold damage, and pathogen attacks are highly relevant stresses in many grape-growing regions. Precision viticulture can be used to determine and manage the spatial variation in grapevine health within a single vineyard block.

View Article and Find Full Text PDF

Search of Reflectance Indices for Estimating Photosynthetic Activity of Wheat Plants Under Drought Stress.

Plants (Basel)

December 2024

Department of Biophysics, National Research Lobachevsky, State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia.

Global climate change and the associated increasing impact of droughts on crops challenges researchers to rapidly assess plant health on a large scale. Photosynthetic activity is one of the key physiological parameters related to future crop yield. The present study focuses on the search for reflectance parameters for rapid screening of wheat genotypes with respect to photosynthetic activity under drought conditions.

View Article and Find Full Text PDF

Prediction of the toughness of date palm fruit.

Sci Rep

January 2025

Department of Water Relations and Field Irrigation, Agricultural and Biological Research institute, National Research Centre, Giza, Egypt.

This study aimed to predict the toughness of date palm fruit (Barhi, Saqie, and Khodry varieties) at different ripening stages (Khalal, Rutab, and Tamar) using Hertz Theory by evaluating the physical and mechanical characteristics of the fruits. Physical measurements revealed that high moisture content in the Khalal stage led to larger dimensions and mass across all varieties, with Barhi dates showing a moisture content of 63.31%, which decreased to 32.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!