Ultrasound-based haptic feedback is a potential technology for human-computer interaction (HCI) with the advantages of a low cost, low power consumption and a controlled force. In this paper, phase optimization for multipoint haptic feedback based on an ultrasound array was investigated, and the corresponding experimental verification is provided. A mathematical model of acoustic pressure was established for the ultrasound array, and then a phase-optimization model for an ultrasound transducer was constructed. We propose a pseudo-inverse (PINV) algorithm to accurately determine the phase contribution of each transducer in the ultrasound array. By controlling the phase difference of the ultrasound array, the multipoint focusing forces were formed, leading to various shapes such as geometries and letters, which can be visualized. Because the unconstrained PINV solution results in unequal amplitudes for each transducer, a weighted amplitude iterative optimization was deployed to further optimize the phase solution, by which the uniform amplitude distributions of each transducer were obtained. For the purpose of experimental verification, a platform of ultrasound haptic feedback consisting of a Field Programmable Gate Array (FPGA), an electrical circuit and an ultrasound transducer array was prototyped. The haptic performances of a single point, multiple points and dynamic trajectory were verified by controlling the ultrasound force exerted on the liquid surface. The experimental results demonstrate that the proposed phase-optimization model and theoretical results are effective and feasible, and the acoustic pressure distribution is consistent with the simulation results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949327PMC
http://dx.doi.org/10.3390/s22062394DOI Listing

Publication Analysis

Top Keywords

ultrasound array
20
haptic feedback
16
ultrasound
9
phase optimization
8
optimization multipoint
8
multipoint haptic
8
feedback based
8
based ultrasound
8
experimental verification
8
acoustic pressure
8

Similar Publications

Background And Objective: Diagnosis of pathology in the mediastinum has proven quite challenging, given the wide variability of both benign and malignant diseases that affect a diverse array of structures. This complexity has led to the development of many different non-invasive and invasive diagnostic modalities. Historically, diagnosis of the mediastinum has relied on different imaging modalities such as chest X-ray, computed tomography (CT), magnetic resonance imaging, and positron emission topography.

View Article and Find Full Text PDF

Objective: To explore the genetic characteristics of a Chinese pedigree with rare mosaic 11q partial duplication and its pathogenetic mechanisms.

Methods: A pedigree which underwent prenatal diagnosis at Wenzhou Central Hospital between September 25, 2015 and November 30, 2023 was selected for the study. Clinical data were collected from the pedigree.

View Article and Find Full Text PDF

Ultrasound-induced thermal strain imaging (US-TSI) is a promising ultrasound imaging modality that has been demonstrated in preclinical studies to identify a lipid-rich necrotic core of an atherosclerotic plaque. However, human physiological motion, e.g.

View Article and Find Full Text PDF

Embryoscopy and targeted embryo biopsy for the management of early abortion.

J Assist Reprod Genet

January 2025

Centro de Asistencia a La Reproducción Humana de Canarias, La Laguna, Santa Cruz de Tenerife, Spain.

Purpose: To evaluate the safety, accuracy, and effectiveness of embryoscopy for the management of early abortion and to test the hypothesis that targeted embryo and chorionic villi sampling avoids maternal cell contamination (MCC) for genetic testing of products of conception (POC).

Methods: This ambispective study included 74 consecutive patients presenting with early abortion. Gestations between 5 and 9 weeks, obtained either spontaneously or through assisted reproductive technologies were included.

View Article and Find Full Text PDF

Neuromuscular abnormality is the leading cause of disability in adults. Understanding the complex interplay between muscle structure and function is crucial for effective treatment and rehabilitation. However, the substantial deformation of muscles during movement (up to 40%) poses challenges for accurate assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!