LiDAR-Stabilised GNSS-IMU Platform Pose Tracking.

Sensors (Basel)

School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.

Published: March 2022

The requirement to estimate the six degree-of-freedom pose of a moving platform frequently arises in automation applications. It is common to estimate platform pose by the fusion of global navigation satellite systems (GNSS) measurements and translational acceleration and rotational rate measurements from an inertial measurement unit (IMU). This paper considers a specific situation where two GNSS receivers and one IMU are used and gives the full formulation of a Kalman filter-based estimator to do this. A limitation in using this sensor set is the difficulty of obtaining accurate estimates of the degree of freedom corresponding to rotation about the line passing through the two GNSS receiver antenna centres. The GNSS-aided IMU formulation is extended to incorporate LiDAR measurements in both known and unknown environments to stabilise this degree of freedom. The performance of the pose estimator is established by comparing expected LiDAR range measurements with actual range measurements. Distributions of the terrain point-to-model error are shown to improve from 0.27m mean error to 0.06m when the GNSS-aided IMU estimator is augmented with LiDAR measurements. This precision is marginally degraded to 0.14m when the pose estimator is operated in an unknown environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949951PMC
http://dx.doi.org/10.3390/s22062248DOI Listing

Publication Analysis

Top Keywords

platform pose
8
degree freedom
8
gnss-aided imu
8
lidar measurements
8
pose estimator
8
range measurements
8
measurements
6
pose
5
lidar-stabilised gnss-imu
4
gnss-imu platform
4

Similar Publications

Background: The aging global population and the rising prevalence of chronic disease and multimorbidity have strained health care systems, driving the need for expanded health care resources. Transitioning to home-based care (HBC) may offer a sustainable solution, supported by technological innovations such as Internet of Medical Things (IoMT) platforms. However, the full potential of IoMT platforms to streamline health care delivery is often limited by interoperability challenges that hinder communication and pose risks to patient safety.

View Article and Find Full Text PDF

From Radical Coupling to Enantioselective Controlled Protonation: Advancing Precise Construction of Stereocenters.

J Am Chem Soc

January 2025

Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, PR China.

Recent advancements in green and sustainable platforms, particularly visible light-driven photocatalysis, have spurred significant progress in radical chemistry, enabling the efficient synthesis of important molecules from simple and readily available feedstocks under mild conditions. However, the rapid orbital flipping and high reactivity of radicals pose substantial challenges for achieving precise enantiocontrol in stereocenter formation via radical coupling. In this study, we present a generic and efficient strategy that modulates this elusive approach, facilitating enantiocontrollable protonation through 1,3-boron migration.

View Article and Find Full Text PDF

Nanoplastics, emerging as pervasive environmental pollutants, pose significant threats to ecosystems and human health due to their small size and potential toxicity. However, detecting trace levels of nanoplastics remains challenging because of limitations in the current analytical methods. Herein, we propose a method that combines superhydrophobic enrichment with SERS analysis for detecting trace nanoplastics in aqueous environments.

View Article and Find Full Text PDF

Introduction: Brain arteriovenous malformations (AVM) are complex vascular pathologies with a significant risk of hemorrhage. Stereotactic radiosurgery (SRS) is an effective treatment modality for AVM, initially popularized on the Gamma Knife (Elekta AB, Stockholm, Sweden) platform, and now benefits from the modern advances in linear accelerator (LINAC)-based platforms. This study evaluates the outcomes of LINAC-based SRS/hypofractionated stereotactic radiotherapy (hFSRT) for cerebral AVMs.

View Article and Find Full Text PDF

Perfluorooctanoate and nano-titanium dioxide modulate male gonadal function in the mussel Mytilus coruscus.

Aquat Toxicol

January 2025

International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China. Electronic address:

Perfluorooctanoic acid (PFOA) and nano-titanium dioxide (nano-TiO₂) are widely used in industrial applications such as manufacturing and textiles, and can be released into the environment, causing toxicity to marine organisms. To study the effects of these pollutants on the gonadal development, we exposed the males of Mytilus coruscus to varying PFOA concentrations (2 and 200 μg/L) alone or combined with nano-TiO (0.1 mg/L, size: 25 nm) for 14 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!