This paper presents the results obtained using the rapid demagnetization method in the case of an NdFeB magnet and a new hybrid core. The developed core consists of three basic elements: an NdFeB magnet, Terfenol-D, and a specifically developed metallic alloy prepared by means of a suction casting method. The main goal of proposing a new type of core in the event of rapid demagnetization is to partially replace the permanent magnet with another material to reduce the rare-earth material while keeping the amount of generated electricity at a level that makes it possible to power low-power electrical devices. To "capture" the rapid change of magnetic flux, a small number of coils were made around the core. However, the very low voltage level at very high current required the use of specialized electronic transducers capable of delivering a voltage level appropriate for powering a microprocessor system. To overcome this problem, a circuit designed by the authors that enabled voltage processing from low impedance magnetic circuits was used. The obtained results demonstrated the usefulness of the system at resonant frequencies of up to 1 MHz.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8955915 | PMC |
http://dx.doi.org/10.3390/s22062102 | DOI Listing |
Nano Lett
September 2024
School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, 4000 Queensland, Australia.
Two-dimensional (2D) antiferromagnetic (AFM) materials boasting a high Néel temperature (), high carrier mobility, and fast spin response under an external field are in great demand for efficient spintronics. Herein, we theoretically present the MoB monolayer as an ideal 2D platform for AFM spintronics. The AFM MoB monolayer features a symmetry-protected, 4-fold degenerate Dirac nodal line (DNL) at the Fermi level.
View Article and Find Full Text PDFMaterials (Basel)
June 2024
Walsin-Lihwa Corporation, Tainan 73743, Taiwan.
Stainless steel grade 430 is a type of soft magnetic electromagnetic material with rapid magnetization and demagnetization properties. Considering the delay phenomenon during operation, this study selected 430 stainless steel as the material and explored various metallurgical methods such as magnetic annealing and the addition of Mo as well as increasing the Si content to investigate the microstructure, mechanical behavior, and magnetic properties of each material, aiming to improve the magnetic properties of 430 stainless steel. Experimental results showed that the four electromagnetic steel materials (430F, 430F-MA, 434, and KM31) had equiaxed grain matrix structures, and excellent tensile and elongation properties were observed for each specimen.
View Article and Find Full Text PDFAdv Mater
May 2024
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, China.
Controlling the multi-state switching is significantly essential for the extensive utilization of 2D ferromagnet in magnetic racetrack memories, topological devices, and neuromorphic computing devices. The development of all-electric functional nanodevices with multi-state switching and a rapid reset remains challenging. Herein, to imitate the potentiation and depression process of biological synapses, a full-current strategy is unprecedently established by the controllable resistance-state switching originating from the spin configuration rearrangement by domain wall number modulation in FeGeTe.
View Article and Find Full Text PDFMed Phys
February 2024
Department of Radiation Oncology, The University of Toledo Health Science Campus, Toledo, Ohio, USA.
Rev Sci Instrum
June 2023
Depertment of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
We report on an Er-doped fiber (EDF)-laser-based dual-comb system that allows us to perform triggerless asynchronous optical sampling pump-probe measurements of ultrafast demagnetization and spin precession in magnetic materials. Because the oscillation frequencies of the two frequency-comb light sources are highly stabilized, the pulse-to-pulse timing jitter is sufficiently suppressed, and data accumulation without any trigger signals is possible. To effectively induce spin precession in ferromagnetic thin films, the spectral bandwidth of the output of one of the EDF frequency comb sources is broadened by a highly nonlinear fiber and then amplified at a wavelength of about 1030 nm by a Yb-doped fiber amplifier.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!