https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=35336235&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 3533623520240825
2076-26071032022Mar19MicroorganismsMicroorganismsA Farm-to-Fork Quantitative Microbial Exposure Assessment of β-Lactam-Resistant Escherichia coli among U.S. Beef Consumers.66110.3390/microorganisms10030661Integrated quantitative descriptions of the transmission of β-lactam-resistant Escherichia coli (BR-EC) from commercial beef products to consumers are not available. Here, a quantitative microbial exposure assessment model was established to simulate the fate of BR-EC in a farm-to-fork continuum and provide an estimate of BR-EC exposure among beef consumers in the U.S. The model compared the per-serving exposures from the consumption of intact beef cuts, non-intact beef cuts, and ground beef. Additionally, scenario analysis was performed to evaluate the relative contribution of antibiotic use during beef cattle production to the level of human exposure to BR-EC. The model predicted mean numbers of BR-EC of 1.7 × 10-4, 8.7 × 10-4, and 6.9 × 10-1 CFU/serving for intact beef cuts, non-intact beef cuts, and ground beef, respectively, at the time of consumption. Sensitivity analyses using the baseline model suggested that factors related to sectors along the supply chain, i.e., feedlots, processing plants, retailers, and consumers, were all important for controlling human exposure to BR-EC. Interventions at the processing and post-processing stages are expected to be most effective. Simulation results showed that a decrease in antibiotic use among beef cattle might be associated with a reduction in exposure to BR-EC from beef consumption. However, the absolute reduction was moderate, indicating that the effectiveness of restricting antibiotic use as a standalone strategy for mitigating human exposure to BR-EC through beef consumption is still uncertain. Good cooking and hygiene practices at home and advanced safety management practices in the beef processing and post-processing continuum are more powerful approaches for reducing human exposure to antibiotic-resistant bacteria in beef products.ZhangYangjunnaYInstitute of Food Science and Engineering, Hangzhou Medical College, Hangzhou 310013, China.SchmidtJohn WJW0000-0003-0494-2436United States Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE 68933, USA.ArthurTerrance MTMUnited States Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE 68933, USA.WheelerTommy LTLUnited States Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE 68933, USA.ZhangQiQDepartment of Mathematics and Statistics, College of Engineering and Physical Sciences, University of New Hampshire, Durham, NH 03824, USA.WangBingB0000-0003-0174-2252Department of Food Science and Technology, College of Agricultural Sciences and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.eng2017-68003-26497National Institute of Food and Agriculture1014035United States Department of AgricultureJournal Article20220319
SwitzerlandMicroorganisms1016258932076-2607antibiotic resistancebeef consumptionrisk assessmentsimulation modelThe USDA is an equal opportunity provider and employer. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of any product mentioned, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable.
202212620223620223102022326152022327602022327612022319epublish35336235PMC895233610.3390/microorganisms10030661microorganisms10030661Durso L.M., Cook K.L. Impacts of antibiotic use in agriculture: What are the benefits and risks? Curr. Opin. Microbiol. 2014;19:37–44. doi: 10.1016/j.mib.2014.05.019.10.1016/j.mib.2014.05.01924997398FDA U.S. National Antimicrobial Resistance Monitoring System (NARMS) Retail Meat Annual Report. [(accessed on 5 May 2018)];2011 Available online: http://www.fda.gov/downloads/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/UCM334834.pdf.Tadesse D.A., Zhao S., Tong E., Ayers S., Singh A., Bartholomew M.J., McDermott P.F. Antimicrobial Drug Resistance in Escherichia coli from Humans and Food Animals, United States, 1950–2002. Emerg. Infect. Dis. 2012;18:741–749. doi: 10.3201/eid1805.111153.10.3201/eid1805.111153PMC335808522515968Smet A., Martel A., Persoons D., Dewulf J., Heyndrickx M., Herman L., Haesebrouck F., Butaye P. Broad-spectrum β-lactamases among Enterobacteriaceae of animal origin: Molecular aspects, mobility and impact on public health. FEMS Microbiol. Rev. 2010;34:295–316. doi: 10.1111/j.1574-6976.2009.00198.x.10.1111/j.1574-6976.2009.00198.x20030731Paterson D.L., Bonomo R.A. Extended-Spectrum β-Lactamases: A Clinical Update. Clin. Microbiol. Rev. 2005;18:657–686. doi: 10.1128/CMR.18.4.657-686.2005.10.1128/CMR.18.4.657-686.2005PMC126590816223952FDA Animal & Veterinary: Cephalosporin Order of Prohibition Questions and Answers. [(accessed on 7 May 2018)]; Available online: https://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/ucm421538.htm.Jiang X., Yu T., Wu N., Meng H., Shi L. Detection of qnr, aac(6′)-Ib-cr and qepA genes in Escherichia coli isolated from cooked meat products in Henan, China. Int. J. Food Microbiol. 2014;187:22–25. doi: 10.1016/j.ijfoodmicro.2014.06.026.10.1016/j.ijfoodmicro.2014.06.02625036771Schmidt J.W., Agga G.E., Bosilevac J.M., Brichta-Harhay D.M., Shackelford S.D., Wang R., Wheeler T.L., Arthur T.M. Occurrence of antimicrobial-resistant Escherichia coli and Salmonella enterica in the beef cattle production and processing continuum. Appl. Environ. Microbiol. 2015;81:713–725. doi: 10.1128/AEM.03079-14.10.1128/AEM.03079-14PMC427759025398858Vikram A., Miller E., Arthur T.M., Bosilevac J.M., Wheeler T.L., Schmidt J.W. Similar levels of antimicrobial resistance in U.S. food service ground beef products with and without a “Raised without Antibiotics” claim. J. Food Prot. 2018;81:2007–2018. doi: 10.4315/0362-028X.JFP-18-299.10.4315/0362-028X.JFP-18-29930476443Pfeifer Y., Cullik A., Witte W. Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int. J. Med. Microbiol. 2010;300:371–379. doi: 10.1016/j.ijmm.2010.04.005.10.1016/j.ijmm.2010.04.00520537585Korzeniewska E., Korzeniewska A., Harnisz M. Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment. Ecotoxicol. Environ. Saf. 2013;91:96–102. doi: 10.1016/j.ecoenv.2013.01.014.10.1016/j.ecoenv.2013.01.01423433837Rasheed M.U., Thajuddin N., Ahamed P., Teklemariam Z., Jamil K. Antimicrobial drug resistance in strains of Escherichia coli isolated from food sources. Rev. Inst. Med. Trop. São Paulo. 2014;56:341–346. doi: 10.1590/S0036-46652014000400012.10.1590/S0036-46652014000400012PMC413182125076436Dohoo I.R., Martin S.W., Stryhn H. Methods in Epidemiologic Research. VER Inc.; Waldorf, MD, USA: 2012.USDA Feedlot 2011 Part IV: Health and Health Management on U.S. Feedlots with a Capacity of 1000 or More Head. [(accessed on 28 July 2018)]; Available online: https://www.aphis.usda.gov/animal_health/nahms/feedlot/downloads/feedlot2011/Feed11_dr_PartIV.pdf.Niyonzima E., Ongol M.P., Kimonyo A., Sindic M. Risk factors and control measures for bacterial contamination in the bovine meat chain: A review on Salmonella and pathogenic E. coli. J. Food Res. 2015;4:98–121. doi: 10.5539/jfr.v4n5p98.10.5539/jfr.v4n5p98USDA-FSIS Risk Assessment of the Public Health Impact of Escherichia coli O157:H7 in Ground Beef. [(accessed on 28 July 2018)]; Available online: https://www.fsis.usda.gov/wps/wcm/connect/1db13d79-1cd9-4e4d-b6ca-16ad89a085a1/00-023NReport.pdf?MOD=AJPERES.Vikram A., Rovira P., Agga G.E., Arthur T.M., Bosilevac J.M., Wheeler T.L., Morley P.S., Belk K.E., Schmidt J.W. Impact of “raised without antibiotics” beef cattle production practices on occurrences of antimicrobial resistance. Appl. Environ. Microbiol. 2017;83:e01682-17. doi: 10.1128/AEM.01682-17.10.1128/AEM.01682-17PMC566614828887421Zhang Y., Wang B. Comparison of the efficacy of commercial antimicrobial interventions for reducing antibiotic resistant and susceptible beef-associated Salmonella and Escherichia coli strains. J. Consum. Prot. Food Saf. 2018;13:3–23. doi: 10.1007/s00003-017-1141-x.10.1007/s00003-017-1141-xSmith B.A., Fazil A., Lammerding A.M. A risk assessment model for Escherichia coli O157:H7 in ground beef and beef cuts in Canada: Evaluating the effects of interventions. Food Control. 2013;29:364–381. doi: 10.1016/j.foodcont.2012.03.003.10.1016/j.foodcont.2012.03.003Woerner D.R., Ransom J.R., Sofos J.N., Dewell G.A., Smith G.C., Salman M.D., Belk K.E. Determining the prevalence of Escherichia coli O157 in cattle and beef from the feedlot to the cooler. J. Food Prot. 2006;69:2824–2827. doi: 10.4315/0362-028X-69.12.2824.10.4315/0362-028X-69.12.282417186645USDA-FSIS Comparative Risk Assessment for Intact (Non-Tenderized) and Non-Intact (Tenderized) Beef: Technical Report. [(accessed on 7 August 2018)]; Available online: https://www.fsis.usda.gov/shared/PDF/Beef_Risk_Assess_Report_Mar2002.pdf.Huang L., Sheen S. Quantitative analysis of vertical translocation and lateral cross-contamination of Escherichia coli O157:H7 during mechanical tenderization of beef. J. Food Saf. 2011;31:108–114. doi: 10.1111/j.1745-4565.2010.00273.x.10.1111/j.1745-4565.2010.00273.xZhang Y., Schmidt J.W., Arthur T.M., Wheeler T.L., Wang B. A comparative quantitative assessment of human exposure to various antimicrobial-resistant bacteria among US ground beef consumers. J. Food Prot. 2021;84:736–759. doi: 10.4315/JFP-20-154.10.4315/JFP-20-15433270822Tamplin M.L., Paoli G., Marmer B.S., Phillips J. Models of the behavior of Escherichia coli O157:H7 in raw sterile ground beef stored at 5 to 46 °C. Int. J. Food Microbiol. 2005;100:335–344. doi: 10.1016/j.ijfoodmicro.2004.10.029.10.1016/j.ijfoodmicro.2004.10.02915854716Baranyi J., Roberts T.A. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 1994;23:277–294. doi: 10.1016/0168-1605(94)90157-0.10.1016/0168-1605(94)90157-07873331Nastasijević I., Lakićević B., Petrović Z. Cold Chain Management in Meat Storage, Distribution and Retail: A Review; Proceedings of the 59th International Meat Industry Conference MEATCON2017; Zlatibor, Serbia. 1–4 October 2017; [(accessed on 7 August 2018)]. Available online: http://iopscience.iop.org/article/10.1088/1755-1315/85/1/012022/pdf.10.1088/1755-1315/85/1/012022/pdfJakubowski T. Temperature monitoring in the transportation of meat products. J. Food Process. Technol. 2015;6:1000502. doi: 10.4172/2157-7110.1000502.10.4172/2157-7110.1000502EcoSure 2007 U.S. Colding Temperature Data of Fresh Meat Products. [(accessed on 8 August 2018)]. Available online: http://foodrisk.org/resources/display/21.Egan A.F., Eustace I.J., Shay B.J. Meat packaging—Maintaining the quality and prolonging the storage life of chilled beef, pork and lamb; Proceedings of the Industry Day: Part of the 34th International Congress of Meat Science and Technology; Brisbane, Australia. 29 August–2 September 1988; pp. 68–75.Godwin S., Coppings R. Analysis of consumer food-handling practices from grocer to home including transport and storage of selected foods. J. Food Distrib. Res. 2005;36:55–62.Smadi H., Sargeant J.M. Quantitative risk assessment of human salmonellosis in Canadian broiler chicken breast from retail to consumption. Risk Anal. 2013;33:232–248. doi: 10.1111/j.1539-6924.2012.01841.x.10.1111/j.1539-6924.2012.01841.x22616714Christensen E. What’s the Right Amount of Meat to Serve per Person? [(accessed on 8 August 2018)]. Available online: https://www.thekitchn.com/whats-the-right-amount-of-meat-to-serve-per-person-112577.USDA Nutrition and Your Health: Dietary Guidelines for Americans. [(accessed on 8 August 2018)]; Available online: https://health.gov/dietaryguidelines/dga2000/dietgd.pdf.Vose D. Risk Analysis: A Quantitative Guide. 3rd ed. John Wiley & Sons; New York, NY, USA: 2008.Nekouei O., Checkley S., Waldner C., Smith B.A., Invik J., Carson C., Avery B., Sanchez J., Gow S. Exposure to antimicrobial-resistant Escherichia coli through the consumption of ground beef in Western Canada. Int. J. Food Microbiol. 2018;272:41–48. doi: 10.1016/j.ijfoodmicro.2018.02.022.10.1016/j.ijfoodmicro.2018.02.02229524769FAO. WHO . Microbiological Risk Assessment–Guidance for food. Volume 36 Food and Agriculture Organization; Rome, Italy: 2021.Evers E.G., Pielaat A., Smid J.H., van Duijkeren E., Vennemann F.B.C., Wijnands L.M., Chardon J.E. Comparative exposure assessment of ESBL-producing Escherichia coli through meat consumption. PLoS ONE. 2017;12:e0169589. doi: 10.1371/journal.pone.0169589.10.1371/journal.pone.0169589PMC521593428056081Heiman K.E., Mody R.K., Johnson S.D., Griffin P.M., Gould L.H. Escherichia coli O157 outbreaks in the United States, 2003–2012. Emerg. Infect. Dis. 2015;21:1293–1301. doi: 10.3201/eid2108.141364.10.3201/eid2108.141364PMC451770426197993Barlow R.S., Gobius K.S., Desmarchelier P.M. Shiga toxin-producing Escherichia coli in ground beef and lamb cuts: Results of a one-year study. Int. J. Food Microbiol. 2006;111:1–5. doi: 10.1016/j.ijfoodmicro.2006.04.039.10.1016/j.ijfoodmicro.2006.04.03916793157Johns D.F., Bratcher C.L., Kerth C.R., McCaskey T. Translocation of surface-inoculated Escherichia coli into whole muscle nonintact beef striploins following blade tenderization. J. Food Prot. 2011;74:1334–1337. doi: 10.4315/0362-028X.JFP-10-444.10.4315/0362-028X.JFP-10-44421819662D’Costa V.M., King C.E., Kalan L., Morar M., Sung W.W.L., Schwarz C., Froese D., Zazula G., Calmels F., Debruyne R., et al. Antibiotic resistance is ancient. Nature. 2011;477:457. doi: 10.1038/nature10388.10.1038/nature1038821881561Nesme J., Cécillon S., Delmont O.T., Monier J.-M., Vogel M.T., Simonet P. Large-scale metagenomic-based study of antibiotic resistance in the environment. Curr. Biol. 2014;24:1096–1100. doi: 10.1016/j.cub.2014.03.036.10.1016/j.cub.2014.03.03624814145Hernández J., González-Acuña D. Anthropogenic antibiotic resistance genes mobilization to the polar regions. Infect. Ecol. Epidemiol. 2016;6:32112. doi: 10.3402/iee.v6.32112.10.3402/iee.v6.32112PMC514965327938628Alexander T.W., Inglis G.D., Yanke L.J., Topp E., Read R.R., Reuter T., McAllister T.A. Farm-to-fork characterization of Escherichia coli associated with feedlot cattle with a known history of antimicrobial use. Int. J. Food Microbiol. 2010;137:40–48. doi: 10.1016/j.ijfoodmicro.2009.11.008.10.1016/j.ijfoodmicro.2009.11.00819963297Guarddon M., Miranda J.M., Rodríguez J.A., Vázquez B.I., Cepeda A., Franco C.M. Quantitative detection of tetracycline-resistant microorganisms in conventional and organic beef, pork and chicken meat. CyTA J. Food. 2014;12:383–388. doi: 10.1080/19476337.2014.892030.10.1080/19476337.2014.892030Muriana P.M., Eager J., Wellings B., Morgan B., Nelson J., Kushwaha K. Evaluation of antimicrobial interventions against E. coli O157:H7 on the surface of raw beef to reduce bacterial translocation during blade tenderization. Foods. 2019;8:80. doi: 10.3390/foods8020080.10.3390/foods8020080PMC640643330791620Signorini M., Costa M., Teitelbaum D., Restovich V., Brasesco H., García D., Superno V., Petroli S., Bruzzone M., Arduini V., et al. Evaluation of decontamination efficacy of commonly used antimicrobial interventions for beef carcasses against Shiga toxin-producing Escherichia coli. Meat Sci. 2018;142:44–51. doi: 10.1016/j.meatsci.2018.04.009.10.1016/j.meatsci.2018.04.00929656275Wheeler T.L., Kalchayanand N., Bosilevac J.M. Pre- and post-harvest interventions to reduce pathogen contamination in the U.S. beef industry. Meat Sci. 2014;98:372–382. doi: 10.1016/j.meatsci.2014.06.026.10.1016/j.meatsci.2014.06.02625027798Woolhouse M.E.J., Ward M.J. Sources of Antimicrobial Resistance. Science. 2013;341:1460–1461. doi: 10.1126/science.1243444.10.1126/science.124344424030495Ashbolt N.J., Amézquita A., Backhaus T., Borriello P., Brandt K.K., Collignon P., Coors A., Finley R., Gaze W.H., Heberer T., et al. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ. Health Perspect. 2013;121:993–1001. doi: 10.1289/ehp.1206316.10.1289/ehp.1206316PMC376407923838256Chapman B., Pintar K., Smith B.A. Multi-exposure pathway model to compare Escherichia coli O157 risks and interventions. Risk Anal. 2018;38:392–409. doi: 10.1111/risa.12826.10.1111/risa.1282628471504Swart A.N., van Leusden F., Nauta M.J. A QMRA model for Salmonella in pork products during preparation and consumption. Risk Anal. 2016;36:516–530. doi: 10.1111/risa.12522.10.1111/risa.1252226857651Nauta M.J. Separation of uncertainty and variability in quantitative microbial risk assessment models. Int. J. Food Microbiol. 2000;57:9–18. doi: 10.1016/S0168-1605(00)00225-7.10.1016/S0168-1605(00)00225-7Aiassa E., Higgins J.P.T., Frampton G.K., Greiner M., Afonso A., Amzal B., Deeks J., Dorne J.L., Glanville J., Lövei G.L., et al. Applicability and feasibility of systematic review for performing evidence-based risk assessment in food and feed safety. Crit. Rev. Food Sci. Nutr. 2015;55:1026–1034. doi: 10.1080/10408398.2013.769933.10.1080/10408398.2013.76993325191830Gkana E., Chorianopoulos N., Grounta A., Koutsoumanis K., Nychas G.J.E. Effect of inoculum size, bacterial species, type of surfaces and contact time to the transfer of foodborne pathogens from inoculated to non-inoculated beef fillets via food processing surfaces. Food Microbiol. 2017;62:51–57. doi: 10.1016/j.fm.2016.09.015.10.1016/j.fm.2016.09.01527889165Agga G.E., Schmidt J.W., Arthur T.M. Antimicrobial-resistant fecal bacteria from ceftiofur-treated and nonantimicrobial-treated comingled beef cows at a cow–calf operation. Microb. Drug Resist. 2016;22:598–608. doi: 10.1089/mdr.2015.0259.10.1089/mdr.2015.025926954009Alexander T.W., Yanke L.J., Topp E., Olson M.E., Read R.R., Morck D.W., McAllister T.A. Effect of subtherapeutic administration of antibiotics on the prevalence of antibiotic-resistant Escherichia coli bacteria in feedlot cattle. Appl. Environ. Microbiol. 2008;74:4405–4416. doi: 10.1128/AEM.00489-08.10.1128/AEM.00489-08PMC249315318502931Berge A.C.B., Moore D.A., Sischo W.M. Field trial evaluating the influence of prophylactic and therapeutic antimicrobial administration on antimicrobial resistance of fecal Escherichia coli in dairy calves. Appl. Environ. Microbiol. 2006;72:3872–3878. doi: 10.1128/AEM.02239-05.10.1128/AEM.02239-05PMC148962116751491Checkley S.L., Campbell J.R., Chirino-Trejo M., Janzen E.D., Waldner C.L. Associations between antimicrobial use and the prevalence of antimicrobial resistance in fecal Escherichia coli from feedlot cattle in western Canada. Can. Vet. J. 2010;51:853–861.PMC290500421037885Cho S., Bender J.B., Diez-Gonzalez F., Fossler C.P., Hedberg C.W., Kaneene J.B., Ruegg P.L., Warnick L.D., Wells S.J. Prevalence and characterization of Escherichia coli O157 isolates from Minnesota dairy farms and county fairs. J. Food Prot. 2006;69:252–259. doi: 10.4315/0362-028X-69.2.252.10.4315/0362-028X-69.2.25216496562Cho S., Diez-Gonzalez F., Fossler C.P., Wells S.J., Hedberg C.W., Kaneene J.B., Ruegg P.L., Warnick L.D., Bender J.B. Prevalence of shiga toxin-encoding bacteria and shiga toxin-producing Escherichia coli isolates from dairy farms and county fairs. Vet. Microbiol. 2006;118:289–298. doi: 10.1016/j.vetmic.2006.07.021.10.1016/j.vetmic.2006.07.02116959442Cho S., Fossler C.P., Diez-Gonzalez F., Wells S.J., Hedberg C.W., Kaneene J.B., Ruegg P.L., Warnick L.D., Bender J.B. Antimicrobial susceptibility of shiga toxin-producing Escherichia coli isolated from organic dairy farms, conventional dairy farms, and county fairs in Minnesota. Foodborne Pathog. Dis. 2007;4:178–186. doi: 10.1089/fpd.2006.0074.10.1089/fpd.2006.007417600485Lowrance T.C., Loneragan G.H., Kunze D.J., Platt T.M., Ives S.E., Scott H.M., Norby B., Echeverry A., Brashears M.M. Changes in antimicrobial susceptibility in a population of Escherichia coli isolated from feedlot cattle administered ceftiofur crystalline-free acid. Am. J. Vet. Res. 2007;68:501–507. doi: 10.2460/ajvr.68.5.501.10.2460/ajvr.68.5.50117472449Sato K., Bartlett P.C., Saeed M.A. Antimicrobial susceptibility of Escherichia coli isolates from dairy farms using organic versus conventional production methods. J. Am. Vet. Med. Assoc. 2005;226:589–594. doi: 10.2460/javma.2005.226.589.10.2460/javma.2005.226.58915742702Sharma R., Munns K., Alexander T., Entz T., Mirzaagha P., Yanke L.J., Mulvey M., Topp E., McAllister T. Diversity and distribution of commensal fecal Escherichia coli bacteria in beef cattle administered selected subtherapeutic antimicrobials in a feedlot setting. Appl. Environ. Microbiol. 2008;74:6178–6186. doi: 10.1128/AEM.00704-08.10.1128/AEM.00704-08PMC257030418723654Walk S.T., Mladonicky J.M., Middleton J.A., Heidt A.J., Cunningham J.R., Bartlett P., Sato K., Whittam T.S. Influence of antibiotic selection on genetic composition of Escherichia coli populations from conventional and organic dairy farms. Appl. Environ. Microbiol. 2007;73:5982–5989. doi: 10.1128/AEM.00709-07.10.1128/AEM.00709-07PMC207499117704272Arthur T.M., Bosilevac J.M., Brichta-Harhay D.M., Guerini M.N., Kalchayanand N., Shackelford S.D., Wheeler T.L., Koohmaraie M. Transportation and lairage environment effects on prevalence, numbers, and diversity of Escherichia coli O157:H7 on hides and carcasses of beef cattle at processing. J. Food Prot. 2007;70:280–286. doi: 10.4315/0362-028X-70.2.280.10.4315/0362-028X-70.2.28017340859Dewell G.A., Simpson C.A., Dewell R.D., Hyatt D.R., Belk K.E., Scanga J.A., Morley P.S., Grandin T., Smith G.C., Dargatz D.A., et al. Impact of transportation and lairage on hide contamination with Escherichia coli O157 in finished beef cattle. J. Food Prot. 2008;71:1114–1118. doi: 10.4315/0362-028X-71.6.1114.10.4315/0362-028X-71.6.111418592735Fluckey W.M., Loneragan G.H., Warner R., Brashears M.M. Antimicrobial drug resistance of Salmonella and Escherichia coli isolates from cattle feces, hides, and carcasses. J. Food Prot. 2007;70:551–556. doi: 10.4315/0362-028X-70.3.551.10.4315/0362-028X-70.3.55117388041Ransom J., Belk K. Investigation of on-Farm Management Practices as Pre-Harvest Beef Microbiological Interventions. [(accessed on 30 July 2018)]. Available online: https://www.beefresearch.org/CMDocs/BeefResearch/Safety_Project_Summaries/FY02_Investigation_of_On_Farm_Management_Practices.pdf.Stephens T.P., Loneragan G.H., Karunasena E., Brashears M.M. Reduction of Escherichia coli O157 and Salmonella in feces and on hides of feedlot cattle using various doses of a direct-fed microbial. J. Food Prot. 2007;70:2386–2391. doi: 10.4315/0362-028X-70.10.2386.10.4315/0362-028X-70.10.238617969623Wells J.E., Shackelford S.D., Berry E.D., Kalchayanand N., Guerini M.N., Varel V.H., Arthur T.M., Bosilevac J.M., Freetly H.C., Wheeler T.L., et al. Prevalence and level of Escherichia coli O157:H7 in feces and on hides of feedlot steers fed diets with or without wet distillers grains with solubles. J. Food Prot. 2009;72:1624–1633. doi: 10.4315/0362-028X-72.8.1624.10.4315/0362-028X-72.8.162419722393USDA Livestock Slaughter 2017 Summary. [(accessed on 5 August 2018)]. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/r207tp32d/cn69m6457/pc289m639/LiveSlauSu-04-18-2018.pdf.AGWEB Dairy Cattle Beef Up Beef Industry. [(accessed on 30 July 2018)]. Available online: https://www.agweb.com/article/dairy-cattle-beef-up-beef-industry-wyatt-bechtel/Nold R. How Much Meat Can you Expect from a Fed Steer? [(accessed on 5 August 2018)]. Available online: http://igrow.org/livestock/beef/how-much-meat-can-you-expect-from-a-fed-steer/Reddish R.L. University of Florida IFAS Extension; 2003. [(accessed on 11 March 2022)]. Cutting the Pork Carcass. Available online: https://www.yumpu.com/en/document/read/21968387/cutting-the-pork-carcass-edis-university-of-florida.Kalchayanand N., Brichta-Harhay D.M., Arthur T.M., Bosilevac J.M., Guerini M.N., Wheeler T.L., Shackelford S.D., Koohmaraie M. Prevalence rates of Escherichia coli O157:H7 and Salmonella at different sampling sites on cattle hides at a feedlot and processing plant. J. Food Prot. 2009;72:1267–1271. doi: 10.4315/0362-028X-72.6.1267.10.4315/0362-028X-72.6.126719610338Bosilevac J.M., Arthur T.M., Bono J.L., Brichta-Harhay D.M., Kalchayanand N., King D.A., Shackelford S.D., Wheeler T.L., Koohmaraie M. Prevalence and enumeration of Escherichia coli O157:H7 and Salmonella in U.S. abattoirs that process fewer than 1000 head of cattle per day. J. Food Prot. 2009;72:1272–1278. doi: 10.4315/0362-028X-72.6.1272.10.4315/0362-028X-72.6.127219610339Brichta-Harhay D.M., Arthur T.M., Bosilevac J.M., Guerini M.N., Kalchayanand N., Koohmaraie M. Enumeration of Salmonella and Escherichia coli O157:H7 in ground beef, cattle carcass, hide and faecal samples using direct plating methods†. J. Appl. Microbiol. 2007;103:1657–1668. doi: 10.1111/j.1365-2672.2007.03405.x.10.1111/j.1365-2672.2007.03405.x17953577Ding T., Rahman S.M.E., Purev U., Oh D.-H. Modelling of Escherichia coli O157:H7 growth at various storage temperatures on beef treated with electrolyzed oxidizing water. J. Food Eng. 2010;97:497–503. doi: 10.1016/j.jfoodeng.2009.11.007.10.1016/j.jfoodeng.2009.11.007Bogard A.K., Fuller C.C., Radke V., Selman C.A., Smith K.E. Ground beef handling and cooking practices in restaurants in eight states. J. Food Prot. 2013;76:2132–2140. doi: 10.4315/0362-028X.JFP-13-126.10.4315/0362-028X.JFP-13-126PMC560131224290692Brichta-Harhay D.M., GUERINI M.N., Arthur T.M., Bosilevac J.M., Kalchayanand N., Shackelford S.D., Wheeler T.L., Koohmaraie M. Salmonella and Escherichia coli O157:H7 contamination on hides and carcasses of cull cattle presented for slaughter in the United States: An evaluation of prevalence and bacterial loads by immunomagnetic separation and direct plating methods. Appl. Environ. Microbiol. 2008;74:6289–6297. doi: 10.1128/AEM.00700-08.10.1128/AEM.00700-08PMC257027518723661Higgins J.P.T., Thomas J., Chandler J., Cumpston M., Li T., Page M.J., Welch W.V., editors. Cochrane Handbook for Systematic Reviews of Interventions. [(accessed on 11 March 2022)]. Version 6.0 (Updated July 2019) Available online: www.training.cochrane.org/handbook.0Hedges L.V. A random effects model for effect sizes. Psychol. Bull. 1983;93:388–395. doi: 10.1037/0033-2909.93.2.388.10.1037/0033-2909.93.2.388Viechtbauer W. Conducing meta-analyses in R with the metafor package. J. Stat. Softw. 2010;36:1–48. doi: 10.18637/jss.v036.i03.10.18637/jss.v036.i03Higgins J.P.T., Thompson S.G., Deeks J.J., Altman D.G. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–560. doi: 10.1136/bmj.327.7414.557.10.1136/bmj.327.7414.557PMC19285912958120