Conjugation Operons in Gram-Positive Bacteria with and without Antitermination Systems.

Microorganisms

Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Instituto de Biología Molecular Eladio Viñuela (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain.

Published: March 2022

Genes involved in the same cellular process are often clustered together in an operon whose expression is controlled by an upstream promoter. Generally, the activity of the promoter is strictly controlled. However, spurious transcription undermines this strict regulation, particularly affecting large operons. The negative effects of spurious transcription can be mitigated by the presence of multiple terminators inside the operon, in combination with an antitermination system. Antitermination systems modify the transcription elongation complexes and enable them to bypass terminators. Bacterial conjugation is the process by which a conjugative DNA element is transferred from a donor to a recipient cell. Conjugation involves many genes that are mostly organized in one or a few large operons. It has recently been shown that many conjugation operons present on plasmids replicating in Gram-positive bacteria possess a bipartite antitermination system that allows not only many terminators inside the conjugation operon to be bypassed, but also the differential expression of a subset of genes. Here, we show that some conjugation operons on plasmids belonging to the Inc18 family of Gram-positive broad host-range plasmids do not possess an antitermination system, suggesting that the absence of an antitermination system may have advantages. The possible (dis)advantages of conjugation operons possessing (or not) an antitermination system are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8955417PMC
http://dx.doi.org/10.3390/microorganisms10030587DOI Listing

Publication Analysis

Top Keywords

antitermination system
20
conjugation operons
16
gram-positive bacteria
8
antitermination systems
8
spurious transcription
8
large operons
8
terminators inside
8
operons plasmids
8
conjugation
7
antitermination
7

Similar Publications

The respiratory syncytial virus (RSV) M2-1 protein is a transcriptional antitermination factor crucial for efficiently synthesizing multiple full-length viral mRNAs. During RSV infection, M2-1 exists in a complex with mRNA within cytoplasmic compartments called inclusion body-associated granules (IBAGs). Prior studies showed that M2-1 can bind along the entire length of viral mRNAs instead of just gene-end (GE) sequences, suggesting that M2-1 has more sophisticated RNA recognition and binding characteristics.

View Article and Find Full Text PDF

Antagonistic interactions between phage and host factors control arbitrium lysis-lysogeny decision.

Nat Microbiol

January 2024

Instituto de Biomedicina de Valencia (IBV)-CSIC and CIBER de Enfermedades Raras (CIBERER)-ISCIII, Valencia, Spain.

Phages can use a small-molecule communication arbitrium system to coordinate lysis-lysogeny decisions, but the underlying mechanism remains unknown. Here we determined that the arbitrium system in Bacillus subtilis phage phi3T modulates the bacterial toxin-antitoxin system MazE-MazF to regulate the phage life cycle. We show that phi3T expresses AimX and YosL, which bind to and inactivate MazF.

View Article and Find Full Text PDF

RNA begins to fold as it is transcribed by an RNA polymerase. Consequently, RNA folding is constrained by the direction and rate of transcription. Understanding how RNA folds into secondary and tertiary structures therefore requires methods for determining the structure of cotranscriptional folding intermediates.

View Article and Find Full Text PDF

Extraordinary long-stem confers resistance of intrinsic terminators to processive antitermination.

Nucleic Acids Res

July 2023

Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

Many prokaryotic operons encode a processive antitermination (P-AT) system. Transcription complexes associated with an antitermination factor can bypass multiple transcription termination signals regardless of their sequences. However, to avoid compromising transcriptional regulation of downstream regions, the terminator at the end of the operon needs to be resistant to antitermination.

View Article and Find Full Text PDF

Ribosome biogenesis occurs co-transcriptionally and entails rRNA folding, ribosomal protein binding, rRNA processing, and rRNA modification. In most bacteria, the 16S, 23S and 5S rRNAs are co-transcribed, often with one or more tRNAs. Transcription involves a modified RNA polymerase, called the antitermination complex, which forms in response to cis-acting elements (boxB, boxA and boxC) in the nascent pre-rRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!