Metamaterials and Metasurfaces: A Review from the Perspectives of Materials, Mechanisms and Advanced Metadevices.

Nanomaterials (Basel)

Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 34110, Qatar.

Published: March 2022

Throughout human history, the control of light, electricity and heat has evolved to become the cornerstone of various innovations and developments in electrical and electromagnetic technologies. Wireless communications, laser and computer technologies have all been achieved by altering the way light and other energy forms act naturally and how to manage them in a controlled manner. At the nanoscale, to control light and heat, matured nanostructure fabrication techniques have been developed in the last two decades, and a wide range of groundbreaking processes have been achieved. Photonic crystals, nanolithography, plasmonics phenomena and nanoparticle manipulation are the main areas where these techniques have been applied successfully and led to an emergent material sciences branch known as metamaterials. Metamaterials and functional material development strategies are focused on the structures of the matter itself, which has led to unconventional and unique electromagnetic properties through the manipulation of light-and in a more general picture the electromagnetic waves-in widespread manner. Metamaterial's nanostructures have precise shape, geometry, size, direction and arrangement. Such configurations are impacting the electromagnetic light waves to generate novel properties that are difficult or even impossible to obtain with natural materials. This review discusses these metamaterials and metasurfaces from the perspectives of materials, mechanisms and advanced metadevices in depth, with the aim to serve as a solid reference for future works in this exciting and rapidly emerging topic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8953484PMC
http://dx.doi.org/10.3390/nano12061027DOI Listing

Publication Analysis

Top Keywords

metamaterials metasurfaces
8
perspectives materials
8
materials mechanisms
8
mechanisms advanced
8
advanced metadevices
8
control light
8
metamaterials
4
metasurfaces review
4
review perspectives
4
metadevices human
4

Similar Publications

Ultrathin BIC Metasurfaces Based on Ultra-Low-Loss SbSe Phase-Change Material.

Nano Lett

December 2024

School of Physics and Astronomy, Faculty of Science, Monash University, Melbourne, Victoria 3800, Australia.

Ultrathin and low-loss phase-change materials (PCMs) are highly valued for their fast and effective phase transitions and applications in reconfigurable photonic chips, metasurfaces, optical modulators, sensors, photonic memories, and neuromorphic computing. However, conventional PCMs mostly suffer from high intrinsic losses in the near-infrared (NIR) region, limiting their potential for high quality factor (-factor) resonant metasurfaces. Here we present the design and fabrication of tunable bound states in the continuum (BIC) metasurfaces using the ultra-low-loss PCM SbSe.

View Article and Find Full Text PDF

Parallel mechanical computing: Metamaterials that can multitask.

Proc Natl Acad Sci U S A

December 2024

Department of Mechanical and Aerospace Engineering, University at Buffalo (State University of New York), Buffalo, NY 14260-4400.

Decades after being replaced with digital platforms, analogue computing has experienced a surging interest following developments in metamaterials and intricate fabrication techniques. Specifically, wave-based analogue computers which impart spatial transformations on an incident wavefront, commensurate with a desired mathematical operation, have gained traction owing to their ability to directly encode the input in its unprocessed form, bypassing analogue-to-digital conversion. While promising, these systems are inherently limited to single-task configurations.

View Article and Find Full Text PDF

Innovative Seatbelt-Integrated Metasurface Radar for Enhanced In-Car Healthcare Monitoring.

Sensors (Basel)

November 2024

SDU Health of Informatics, The Maersk Mc-Kinney Moller Institute, Faculty of Engineering, University of Southern Denmark, 5230 Odense M, Denmark.

This study introduces a novel seatbelt-integrated, non-invasive, beam-focusing metamaterial sensing system characterized by its thinness and flexibility. The system comprises a flexible transmitarray lens and an FMCW radar sensor, enabling the accurate detection and analysis of seatbelt usage and positioning through human tissue. The metasurface design remains effective even when subjected to different bending angles.

View Article and Find Full Text PDF

A Compact Low-Frequency Acoustic Perfect Absorber Constructed with a Folded Slit.

Materials (Basel)

December 2024

Xi'an Key Laboratory of Extreme Environment and Protection Technology, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

Tunable perfect acoustic absorption at subwavelength thickness has been a prominent topic in scientific research and engineering applications. Although metamaterials such as labyrinthine metasurfaces and coiling-up-space metamaterials can achieve subwavelength low-frequency acoustic absorption, efficiently realizing tunable absorption under uniform and limited size conditions remains challenging. In this paper, we introduce a folded slit to enhance the micro-slit acoustic absorber, effectively improving its low-frequency acoustic absorption performance and successfully achieving a perfect acoustic absorption coefficient of 0.

View Article and Find Full Text PDF

In this study, a hybrid energy harvesting system based on a conventional solar cell combined with 3D-printed metasurface units is studied. Millimeter-scale metasurface units were fabricated via the stereolithography technique, and then they were covered with conductive silver paint, in order to achieve high electric conductivity. The performance of single, as well as two-unit metasurface harvesters, was thoroughly investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!