AI Article Synopsis

  • Ice storage systems are effective cold thermal energy storage solutions due to water's high enthalpy of fusion, being eco-friendly and cost-effective but facing challenges with slow phase change processes.
  • The study explores using nanomaterials and design modifications, like double helically coiled coolant tubes and connecting plates, to improve heat transfer in these systems.
  • Results indicate that combining nano additives and design innovations can significantly enhance the solidification rate by nearly 29.9%.

Article Abstract

Due to the high enthalpy of fusion in water, ice storage systems are known as one of the best cold thermal energy storage systems. The phase change material used in these systems is water, thus it is inexpensive, accessible, and completely eco-friendly. However, despite the numerous advantages of these systems, the phase change process in them is time-consuming and this leads to difficulties in their practical application. To solve this problem, the addition of nanomaterials can be helpful. This study aims to investigate the compound heat transfer enhancement of a cylindrical-shaped unit equipped with double helically coiled coolant tubes using connecting plates and nano additives as heat transfer augmentation methods. Complex three-dimensional numerical simulations are carried out here to assess the best heat exchanger material as well as the impact of various nanoparticle types, including alumina, copper oxide, and titania, and their concentrations in the PCM side of the ice storage unit. The influence of these parameters is discussed on the charging rate and the temperature evolution factor in these systems. The results suggest that using nano additives, as well as the connecting plates, together is a promising way to enhance the solidification rate by up to 29.9%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954703PMC
http://dx.doi.org/10.3390/nano12061010DOI Listing

Publication Analysis

Top Keywords

heat transfer
12
ice storage
12
nano additives
12
connecting plates
12
compound heat
8
transfer augmentation
8
storage unit
8
storage systems
8
systems phase
8
phase change
8

Similar Publications

Encapsulation of Oil Droplets Using Film-Forming Janus Nanoparticles.

Langmuir

January 2025

School of Chemistry, Key Centre for Polymers and Colloids, The University of Sydney, Sydney, New South Wales 2006, Australia.

Polymer Janus nanoparticles with one hard cross-linked polystyrene lobe and one soft film-forming poly(methyl methacrylate--butyl acrylate) lobe were synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated emulsion polymerization. The Janus nanoparticles adsorbed to oil/water and air/water interfaces, where the soft lobes coalesced, forming films of thickness between 25 and 250 nm; droplets of silicone oil could be stably encapsulated in polymer in this way. When prepared by mechanical mixing without additives, capsules of diameter 5-500 μm could be prepared, and with additives and application of heat, capsules of diameter around 5 μm were achieved, even with highly viscous silicone oil (20,000 cSt).

View Article and Find Full Text PDF

In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.

View Article and Find Full Text PDF

Estimating in vivo power deposition density in thermotherapies based on ultrasound thermal strain imaging.

J Acoust Soc Am

January 2025

Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

In thermal therapies, accurate estimation of in-tissue power deposition density (PDD) is essential for predicting temperature distributions over time or regularizing temperature imaging. Based on our previous work on ultrasound thermometry, namely, multi-thread thermal strain imaging (MT-TSI), this work develops an in vivo PDD estimation method. Specifically, by combining the TSI model infinitesimal echo strain filter with the bio-heat transfer theory (the Pennes equation), a finite-difference time-domain model is established to allow online extraction of the PDD.

View Article and Find Full Text PDF

This study investigates the significance of single-walled (SWCNTs) and multi-walled (MWCNTs) carbon nanotubes with a convectional fluid (water) over a vertical cone under the influences of chemical reaction, magnetic field, thermal radiation and saturated porous media. The impact of heat sources is also examined. Based on the flow assumptions, the fundamental flow equations are modeled as partial differential equations (PDEs).

View Article and Find Full Text PDF

Laser ablation is a commonly employed technique to enhance the damage resistance of fused silica optics due to its non-contact nature and the absence of polishing aids. However, during the ablation process, laser-induced ripples are inevitably formed, posing significant risks by potentially lowering the laser-induced damage threshold (LIDT). This study investigates the impact of these laser-ablated ripples on damage resistance using numerical models that account for electromagnetic fields, heat transfer, and solid mechanics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!