Surface micro-nanostructuring can provide new functionalities and properties to coatings. For example, it can improve the absorption efficiency, hydrophobicity and/or tribology properties. In this context, we studied the influence of micro-nanostructuring on the photocatalytic efficiency of sol-gel TiO coatings during formic acid degradation under UV illumination. The micro-nanostructuring was performed using the UV illumination of microspheres deposited on a photopatternable sol-gel layer, leading to a hexagonal arrangement of micropillars after development. The structures and coatings were characterized using Raman spectroscopy, ellipsometry, atomic force microscopy and scanning electron microscopy. When the sol-gel TiO films were unstructured and untreated at 500 °C, their effect on formic acid's degradation under UV light was negligible. However, when the films were annealed at 500 °C, they crystallized in the anatase phase and affected the degradation of formic acid under UV light, also depending on the thickness of the layer. Finally, we demonstrated that surface micro-nanostructuring in the form of nanopillars can significantly increase the photocatalytic efficiency of a coating during the degradation of formic acid under UV light.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8953088PMC
http://dx.doi.org/10.3390/nano12061008DOI Listing

Publication Analysis

Top Keywords

formic acid
16
degradation formic
12
influence micro-nanostructuring
8
surface micro-nanostructuring
8
photocatalytic efficiency
8
sol-gel tio
8
500 °c
8
acid light
8
degradation
5
formic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!