In this research, we successfully developed a green, economical and effective one-step hydrothermal method for the synthesis of fluorescent nitrogen-doped carbon dots (N-CDs) by utilizing fresh tea leaves and urea as the carbon and nitrogen sources, respectively. The obtained N-CDs were characterized by TEM, XPS and FT-IR. We found that the N-CDs were near-spherical with an average size of about 2.32 nm, and contained abundant oxygen and nitrogen functional groups. The N-CDs exhibited bright blue fluorescence under ultraviolet illumination, with the maximum emission at 455 nm. Meanwhile, the as-prepared N-CDs could be selectively quenched by Fe ions. The quenching of N-CDs is linearly correlated with the concentration of Fe in the range of 0.1-400 μM with a low detection limit of 0.079 μM. Significantly, the N-CDs present excellent biocompatibility and high photostability. The results also depict that multicolor fluorescence is displayed under a fluorescence microscope and successfully applied for the detection of intracellular Fe. To sum up, the fluorescent N-CDs are expected to be a sensitive detection probe for Fe in biological systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8955450 | PMC |
http://dx.doi.org/10.3390/nano12060986 | DOI Listing |
J Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University (GXU), 100 Daxuedong Road, Xixiangtang District, Nanning 530004 China. Electronic address:
Porous carbons with large surface area (>3000 m/g) and heteroatom dopants have shown great promise as electrode materials for zinc ion hybrid capacitors. Centralized mesopores are effective to accelerate kinetics, and edge nitrogen can efficiently enhance pseudocapacitive capability. It is a great challenge to engineer centralized mesopores and edge nitrogen in large-surface-area porous carbons.
View Article and Find Full Text PDFMolecules
January 2025
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
Niobium pentoxide (T-NbO) is a promising anode material for dual-ion batteries due to its high lithium capacity and fast ion storage and release mechanism. However, T-NbO suffers from the disadvantages of poor electrical conductivity and fast cycling capacity decay. Herein, a nitrogen-doped three-dimensional porous carbon (RMF) was prepared for loading niobium pentoxide to construct a composite system with excellent electrochemical performance.
View Article and Find Full Text PDFChemistry
January 2025
Nanjing University of Aeronautics and Astronautics, School of Materials Science and Engineering, 29 Yudao St., 210016, Nanjing, CHINA.
As a potential alternative to next-generation LIBs, carbonous materials have garnered significant attention as anode materials for potassium-ion batteries due to their low cost and environmental friendliness. However, carbonaceous materials cannot fulfill the demand of anode for PIBs, due to volume expansion and poor stability during charging/discharging process. It is well-known that N doping can provide active sites for K-storage, and expand the layer distance between graphite layers.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
Zeolitic imidazolate framework-8 (ZIF-8) has been extensively studied as a precursor for nitrogen-doped carbon (NC) materials due to its high surface area, tunable porosity, and adjustable nitrogen content. However, the intrinsic microporous structure of the ZIF-8 limits mass transport and accessibility of reactants to active sites, reducing its effectiveness in electrochemical applications. In this study, a soft templating approach using a triblock copolymer was used to prepare mesoporous ZIF-8-derived NC (Meso-ZIF-NC) samples.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China.
The development of copper-based materials with a high efficiency and low cost is desirable for use in iodine (I) remediation. Herein, Cu-nanoparticles-functionalized, ZIF-8 (Zeolite Imidazole Framework-8)-derived, nitrogen-doped carbon composites (Cu@Zn-NC) were synthesized by ball milling and pyrolysis processes. The as-prepared composites were characterized using SEM, BET, XRD, XPS, and FT-IR analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!