Role of Working Temperature and Humidity in Acetone Detection by SnO Covered ZnO Nanowire Network Based Sensors.

Nanomaterials (Basel)

Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), LMGP, F-38000 Grenoble, France.

Published: March 2022

A randomly oriented nanowire network, also called nanonet (NN), is a nano-microstructure that is easily integrated into devices while retaining the advantages of using nanowires. This combination presents a highly developed surface, which is promising for sensing applications while drastically reducing integration costs compared to single nanowire integration. It now remains to demonstrate its effective sensing in real conditions, its selectivity and its real advantages. With this work, we studied the feasibility of gaseous acetone detection in breath by considering the effect of external parameters, such as humidity and temperature, on the device's sensitivity. Here the devices were made of ZnO NNs covered by SnO and integrated on top of microhotplates for the fine and quick control of sensing temperature with low energy consumption. The prime result is that, after a maturation period of about 15 h, the devices are sensitive to acetone concentration as low as 2 ppm of acetone at 370 °C in an alternating dry and wet (50% of relative humidity) atmosphere, even after 90 h of experiments. While still away from breath humidity conditions, which is around 90% RH, the sensor response observed at 50% RH to 2 ppm of acetone shows promising results, especially since a temperature scan allows for ethanol's distinguishment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954651PMC
http://dx.doi.org/10.3390/nano12060935DOI Listing

Publication Analysis

Top Keywords

acetone detection
8
nanowire network
8
ppm acetone
8
acetone
5
role working
4
temperature
4
working temperature
4
humidity
4
temperature humidity
4
humidity acetone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!