Nanosized materials have been proposed for a wide range of biomedical applications, given their unique characteristics. However, how these nanomaterials interact with cells and tissues, as well as how they bio-distribute in organisms, is still under investigation. Differences such as the nanoparticle size, shape, and surface chemistry affect the basic mechanisms of cellular uptake and responses, which, in turn, affects the nanoparticles' applicability for biomedical applications. Thus, it is vital to determine how a specific nanoparticle interacts with cells of interest before extensive applications are performed. Here, we delineate the uptake mechanism and localization of gold nanorods in SKBR-3 and MCF-7 breast cancer cell lines. Our results show both differences and similarities in the nanorod-cell interactions of the two cell lines. We accurately quantified the cellular uptake of gold nanorods in SKBR-3 and MCF-7 using inductively coupled plasma mass spectrometry (ICP-MS). We found that both cell types use macropinocytosis to internalize bare nanorods that aggregate and associate with the cell membrane. In addition, we were able to qualitatively track and show intracellular nanoparticle localization using transmission electron microscopy. The results of this study will be invaluable for the successful development of novel and "smart" nanodrugs based on gold nano-structural delivery vehicles, which heavily depend on their complex interactions with single cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8953423 | PMC |
http://dx.doi.org/10.3390/nano12060937 | DOI Listing |
Nucleosides Nucleotides Nucleic Acids
January 2025
Faculty of Agriculture and Allied Sciences, C.V. Raman Global University, Bhubaneswar, India.
The field of biomedical science has witnessed another milestone with the advent of RNA-based therapeutics. This review explores three major RNA molecules, namely: messenger RNA (mRNA), RNA interference technology (RNAi), and Antisense Oligonucleotide (ASO), and analyses U.S.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States.
Nitrogen fertilizer delivery inefficiencies limit crop productivity and contribute to environmental pollution. Herein, we developed Zn- and Fe-doped hydroxyapatite nanomaterials (ZnHAU, FeHAU) loaded with urea (∼26% N) through hydrogen bonding and metal-ligand interactions. The nanomaterials attach to the leaf epidermal cuticle and localize in the apoplast of leaf epidermal cells, triggering a slow N release at acidic conditions (pH 5.
View Article and Find Full Text PDFLymphocyte activation gene 3 (LAG3) is a key receptor involved in the propagation of pathological proteins in Parkinson's disease (PD). This study investigates the role of neuronal LAG3 in mediating the binding, uptake, and propagation of α-synuclein (αSyn) preformed fibrils (PFFs). Using neuronal LAG3 conditional knockout mice and human induced pluripotent stem cells-derived dopaminergic (DA) neurons, we demonstrate that LAG3 expression is critical for pathogenic αSyn propagation.
View Article and Find Full Text PDFBio Protoc
January 2025
Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya.
Agrobacterium-mediated gene transformation method is a vital molecular biology technique employed to develop transgenic plants. Plants are genetically engineered to develop disease-free varieties, knock out unsettling traits for crop improvement, or incorporate an antigenic protein to make the plant a green factory for edible vaccines. The method's robustness was validated through successful transformations, demonstrating its effectiveness as a standard approach for researchers working in plant biotechnology.
View Article and Find Full Text PDFChin J Cancer Res
December 2024
Department of Radiotherapy Oncology, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
Lipid metabolic reprogramming is considered one of the most prominent metabolic abnormalities in cancer, and fatty acid metabolism is a key aspect of lipid metabolism. Recent studies have shown that fatty acid metabolism and its related lipid metabolic pathways play important roles in the malignant progression of nasopharyngeal carcinoma (NPC). NPC cells adapt to harsh environments by enhancing biological processes such as fatty acid metabolism, uptake, production, and oxidation, thereby accelerating their growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!