Quaternary perovskite solar cells are being extensively studied, with the goal of increasing solar cell efficiency and securing stability by changing the ratios of methylammonium, formamidinium, I, and Br. However, when the stoichiometric ratio is changed, the photoelectric properties reflect those of different materials, making it difficult to study the physical properties of the quaternary perovskite. In this study, the optical properties of perovskite materials with various stoichiometric ratios were measured using ellipsometry, and the results were analyzed using an optical simulation model. Because it is difficult to analyze the spectral pattern according to composition using the existing method of statistical regression analysis, an artificial neural network (ANN) structure was constructed to enable the hyperregression analysis of n-dimensional variables. Finally, by inputting the stoichiometric ratios used in the fabrication and the wavelength range to the trained artificial intelligence model, it was confirmed that the optical properties were similar to those measured with an ellipsometer. The refractive index and extinction coefficient extracted through the ellipsometry analysis show a tendency consistent with the color change of the specimen, and have a similar shape to that reported in the literature. When the optical properties of the unmodified perovskite are predicted using the verified artificial intelligence model, a very complex change in pattern is observed, which is impossible to analyze with a general regression method. It can be seen that this change in optical properties is well maintained, even during rapid variations in the pattern according to the change in composition. In conclusion, hyperregression analysis with n-dimensional variables can be performed for the spectral patterns of thin-film materials using a simple big data construction method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9052202 | PMC |
http://dx.doi.org/10.3390/nano12060932 | DOI Listing |
Nanomicro Lett
January 2025
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361000, People's Republic of China.
In recent decades, annual urban fire incidents, including those involving ancient wooden buildings burned, transportation, and solar panels, have increased, leading to significant loss of human life and property. Addressing this issue without altering the surface morphology or interfering with optical behavior of flammable materials poses a substantial challenge. Herein, we present a transparent, low thickness, ceramifiable nanosystem coating composed of a highly adhesive base (poly(SSS-co-HEMA)), nanoscale layered double hydroxide sheets as ceramic precursors, and supramolecular melamine di-borate as an accelerator.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao 266071 PR China. Electronic address:
Luminescent solar concentrators (LSCs) are large scale sunlight collector and can be used for building-integrated photovoltaics (BIPV). Achieving high-performance LSCs requires fluorophores with broad absorption, high quantum yield and a large Stokes shift. Nevertheless, conventional high-efficiency LSCs typically rely on heavy metal-based quantum dots as fluorophores.
View Article and Find Full Text PDFBioorg Chem
January 2025
Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China. Electronic address:
The C-3 and C-5 substituted 20-deoxyingenol monoesters are important active components in Euphorbiaceae plants. Nonetheless, their similar physical properties make them difficult to distinguish. The present study developed fast and efficient rules for identifying the esterification sites of 20-deoxyingenol based on a series of chemical syntheses of monoesters and literature research, utilizing NMR spectroscopy, optical rotation analysis, and chromatographic retention behavior.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain; Catalan Institution for Research and Advanced Studies (ICREA) Passeig de Lluís Companys, 23, Barcelona, 08010, Spain. Electronic address:
Quantum dots (QDs) are the smallest nanomaterials (2-10 nm), with unique optical and electronic properties. Thanks to these properties, QDs have been standing during the last years as signal tags for different applications, including bioimaging, fluorescent biosensors and electrochemical assays. In this review, we explore the current state-of-the art on these nanomaterials, differentiating them between semiconductor and carbon-based QDs.
View Article and Find Full Text PDFArch Oral Biol
January 2025
Department of Pediatric Dentistry/Dentistry for Persons with Special Needs, Division of Oral Restitution, Graduate School, Institute of Science Tokyo, Japan.
Objectives: Transmitted-light plethysmography (TLP) is an objective and non-invasive pulp diagnosis method that has already been validated for applications for incisors. However, there is a demand for TLP use in the molars, it has not yet been established for this application. This study investigated the optimal light source wavelengths for TLP in premolars, to establish a pulp diagnosis system based on measuring pulpal blood flow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!