AI Article Synopsis

  • The study examines the prevalence and genetic diversity of adenoviruses (AdVs) and noroviruses (NoVs) in shellfish and water samples from coastal oyster farms and fishing ports in Taiwan, highlighting a significant food safety risk.
  • The researchers found a higher detection rate of these viruses during cooler months, with AdVs more frequently detected in water than in shellfish.
  • The study emphasizes the need for improved management strategies to reduce virus contamination caused by the discharge of sewage and wastewater into coastal waters.

Article Abstract

The enteric viruses, including adenovirus (AdVs) and norovirus (NoVs), in shellfish is a significant food safety risk. This study investigated the prevalence, seasonal occurrence, genetic diversity, and quantification of AdVs and NoVs in the water and cultured shellfish samples at the four major coastal oyster breeding farms (COBF), five major fishing ports (FP), and their markets in Taiwan. The AdVs/NoVs in the water and shellfish samples were isolated by the membrane filtration and direct elution methods. The RNA of NoVs was reverse-transcribed into complementary DNA through reverse transcription reaction. Further NoVs and AdVs were detected using nested PCR. A higher detection rate was recorded in the low-temperature period than high-temperature. Detection difference was noted between nested PCR and qPCR outcomes for AdVs. The total detection rate of AdVs was higher in the water samples (COBF-40.6%, FP 20%) than the shellfish samples (COBF-11.7% and FP 6.3%). The AdVs load in the water and shellfish samples ranged from 1.23 × 10 to 1.00 × 10 copies/L and 3.57 × 10 to 4.27 × 10 copies/100g, respectively. The total detection of NoVs was highest in the water samples of the FP and their market shellfish samples (11.1% and 3.2%, respectively). Genotyping and phylogenetic analysis were identified as the prevalent AdVs and NoVs genotypes in the water and shellfish samples: A species HAdVs serotype 12; F species HAdVs serotype 41; and C species PAdVs serotype 5 (NoVs GI.2, GI.3 and GII.2). No significant differences were observed between the presence of AdVs, and all of the water quality parameters evaluated (heterotrophic plate count, water temperature, turbidity, pH, salinity, and dissolved oxygen). The virus contamination occurs mainly due to the direct discharge of domestic sewage, livestock farm, and fishing market wastewater into the coastal environment. Thus, this study suggested framing better estuarine management to prevent AdVs/NoVs transmission in water and cultured/distributed shellfish.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954279PMC
http://dx.doi.org/10.3390/pathogens11030316DOI Listing

Publication Analysis

Top Keywords

shellfish samples
24
water shellfish
16
water
10
shellfish
9
oyster breeding
8
breeding farms
8
fishing ports
8
advs
8
advs novs
8
samples
8

Similar Publications

Development of two recombinase-aided amplification assays combined with lateral flow dipstick (RAA-LFD) and real-time fluorescence (RF-RAA) for the detection of Frog virus 3-like ranaviruses.

Fish Shellfish Immunol

January 2025

Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Key Laboratory of Exploration and Utilization of Aquatic genetic Resources, Ministry of Education, International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China. Electronic address:

Frog virus 3-like ranaviruses (FV3-like viruses), particularly FV3 (Frog virus 3), represent typical species within the genus Ranavirus, primarily infecting amphibians and reptiles, thereby posing serious threats to aquaculture and biodiversity conservation. We designed a pair of universal primers and a probe targeting the conserved region of the major capsid protein (MCP) genes of FV3-like viruses. By integrating recombinase-aided amplification (RAA) with lateral flow dipstick (LFD) technology and real-time fluorescence (RF) modification, we established RAA-LFD and RF-RAA assays.

View Article and Find Full Text PDF

The marine diatom genus comprises cosmopolitan phytoplankton species commonly present in the Adriatic Sea. Species within the genus have been of significant concern because they produce domoic acid (DA), which can cause amnesic shellfish poisoning (ASP). In this study, we identified species along the Central and Southeastern Adriatic Sea, where monthly sampling carried out from February 2022 to February 2024 allowed for comprehensive species documentation.

View Article and Find Full Text PDF

Genomic Insight into Isolates from Fresh Raw Mussels and Ready-to-Eat Stuffed Mussels.

Pathogens

January 2025

Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Türkiye.

Consuming raw or undercooked mussels can lead to gastroenteritis and septicemia due to contamination. This study analyzed the prevalence, density, species diversity, and molecular traits of spp. in 48 fresh raw wild mussels (FRMs) and 48 ready-to-eat stuffed mussels (RTE-SMs) through genome analysis, assessing health risks.

View Article and Find Full Text PDF

The Prevalence of Enteric Viruses in Bivalve Molluscs in a Farming Area in Liguria, Northwest Italy.

Pathogens

December 2024

Department of Levante Ligure, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via degli Stagnoni 96, 19100 La Spezia, Italy.

Bivalve molluscs are filter-feeding organisms, capable of concentrating pathogenic microorganisms from the surrounding environment, thus contributing to the spread of viral pathogens, which they can transmit to humans, especially if eaten raw or undercooked. Although norovirus (NoV) and the hepatitis A virus (HAV) are considered the most common causes of foodborne infections, in recent years, other viruses with a zoonotic potential have been identified in shellfish, such as the hepatitis E virus (HEV), astrovirus (AsV), and aichi virus (AiV). The aim of the study was to investigate the presence of classical and emerging pathogenic enteric viruses in oysters () and mussels () from a mollusc farming area in the northwest of Italy, between April 2022 and March 2023.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) have gained significant global attention due to their extensive industrial use and harmful effects on various organisms. Among these, perfluoroalkyl acids (PFAAs) are well-studied, but their diverse precursors remain challenging to monitor. The Total Oxidizable Precursor (TOP) assay offers a powerful approach to converting these precursors into detectable PFAAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!