UV-Cured Chitosan and Gelatin Hydrogels for the Removal of As(V) and Pb(II) from Water.

Polymers (Basel)

Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia, C.so Duca Degli Abruzzi 24, 10129 Torino, Italy.

Published: March 2022

In this study, new photocurable biobased hydrogels deriving from chitosan and gelatin are designed and tested as sorbents for As(V) and Pb(II) removal from water. Those renewable materials were modified by a simple methacrylation reaction in order to make them light processable. The success of the reaction was evaluated by both H-NMR and FTIR spectroscopy. The reactivity of those formulations was subsequently investigated by a real-time photorheology test. The obtained hydrogels showed high swelling capability reaching up to 1200% in the case of methacrylated gelatin (GelMA). Subsequently, the Z-potential of the methacrylated chitosan (MCH) and GelMA was measured to correlate their electrostatic surface characteristics with their adsorption properties for As(V) and Pb(II). The pH of the solutions proved to have a huge influence on the As(V) and Pb(II) adsorption capacity of the obtained hydrogels. Furthermore, the effect of As(V) and Pb(II) initial concentration and contact time on the adsorption capability of MCH and GelMA were investigated and discussed. The MCH and GelMA hydrogels demonstrated to be promising sorbents for the removal of heavy metals from polluted waters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949073PMC
http://dx.doi.org/10.3390/polym14061268DOI Listing

Publication Analysis

Top Keywords

asv pbii
20
mch gelma
12
chitosan gelatin
8
hydrogels
5
asv
5
pbii
5
uv-cured chitosan
4
gelatin hydrogels
4
hydrogels removal
4
removal asv
4

Similar Publications

This work describes fully integrated multifolding electrochemical paper-based devices (ePADs) for enhanced multiplexed voltammetric determination of heavy metals (Zn(II), Cd(II), and Pb(II)) using tunable passive preconcentration. The paper devices integrate five circular sample preconcentration layers and a 3-electrode electrochemical cell. The hydrophobic barriers of the devices are drawn by pen-plotting with hydrophobic ink, while the electrodes are deposited by screen-printing.

View Article and Find Full Text PDF

Dissolved organic matter (DOM) is a widely occurring substance in rivers that can strongly complex with heavy metal ions (HMIs), severely interfering with the electrochemical signal of anodic stripping voltammetry (ASV) and reducing the detection accuracy of HMIs in water. In this study, we investigated a novel advanced oxidation process (AOP) that involves the activation of peroxymonosulfate (PMS) using low-pressure ultraviolet (LPUV) radiation and CoFeO photocatalysis. This novel AOP was used for the first time as an effective pretreatment method to break or weaken the complexation between HMIs and DOM, thereby restoring the electrochemical signals of HMIs.

View Article and Find Full Text PDF

Acetate anions intercalated Fe/Mg-layered double hydroxides modified biochar for efficient adsorption of anionic and cationic heavy metal ions from polluted water.

Chemosphere

August 2024

School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China. Electronic address:

The simultaneous removal of anionic and cationic heavy metals presents a challenge for adsorbents. In this study, acetate (Ac-) was utilized as the intercalating anion for layered double hydroxide (LDH) to prepare a novel biochar composite adsorbent (Ac-LB) designed for the adsorption of Pb(II), Cu(II), and As(V). By utilizing Ac- as the intercalating anion, the interlayer space of the LDH was enlarged from 0.

View Article and Find Full Text PDF

Thiol-Functionalized Adsorbents through Atomic Layer Deposition and Vapor-Phase Silanization for Heavy Metal Ion Removal.

ACS Appl Mater Interfaces

July 2024

Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.

The removal of toxic heavy metal ions from water resources is crucial for environmental protection and public health. In this study, we address this challenge by developing a surface functionalization technique for the selective adsorption of these contaminants. Our approach involves atomic layer deposition (ALD) followed by vapor-phase silanization of porous substrates.

View Article and Find Full Text PDF

A home-made nanoporous gold microsensor for lead(II) detection in seawater with high sensitivity and anti-interference properties.

Anal Methods

July 2024

Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP), Av. Prof. Lineu Prestes, 748, CEP: 05508-000, São Paulo, SP, Brazil.

A nanoporous gold microelectrode (NPG-μE) was fabricated and used for Pb(II) detection in seawater samples square wave anodic stripping voltammetry (SWASV). The Au microelectrode (Au-μE) was fabricated by embedding a gold microfiber into a Pasteur pipette, and its surface was further modified by an anodization-electrochemical reduction (A-ECR) method, yielding the NPG-μE. The fabricated electrodes were characterized by cyclic voltammetry (CV) and field emission scanning electron microscopy (FE-SEM) for electrochemical and structural morphological investigations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!