In recent years, conjugated microporous polymers (CMPs) have become important precursors for environmental and energy applications, compared with inorganic electrode materials, due to their ease of preparation, facile charge storage process, π-conjugated structures, relatively high thermal and chemical stability, abundance in nature, and high surface areas. Therefore, in this study, we designed and prepared new benzobisthiadiazole (BBT)-linked CMPs (BBT-CMPs) using a simple Sonogashira couplings reaction by reaction of 4,8-dibromobenzo(1,2-c;4,5-c')bis(1,2,5)thiadiazole (BBT-Br) with ethynyl derivatives of triphenylamine (TPA-T), pyrene (Py-T), and tetraphenylethene (TPE-T), respectively, to afford TPA-BBT-CMP, Py-BBT-CMP, and TPE-BBT-CMP. The chemical structure and properties of BBT-CMPs such as surface areas, pore size, surface morphologies, and thermal stability using different measurements were discussed in detail. Among the studied BBT-CMPs, we revealed that TPE-BBT-CMP displayed high degradation temperature, up to 340 °C, with high char yield and regular, aggregated sphere based on thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively. Furthermore, the Py-BBT-CMP as organic electrode showed an outstanding specific capacitance of 228 F g and superior capacitance stability of 93.2% (over 2000 cycles). Based on theoretical results, an important role of BBT-CMPs, due to their electronic structure, was revealed to be enhancing the charge storage. Furthermore, all three CMP polymers featured a high conjugation system, leading to improved electron conduction and small bandgaps.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952824PMC
http://dx.doi.org/10.3390/molecules27062025DOI Listing

Publication Analysis

Top Keywords

conjugated microporous
8
microporous polymers
8
charge storage
8
surface areas
8
high
5
ultrastable conjugated
4
polymers benzobisthiadiazole
4
benzobisthiadiazole pyrene
4
pyrene building
4
building blocks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!